Partial sums of the harmonic series. II.

R.P. Boas

It has been conjectured that if the partial sums of the harmonic series exceed the integer $A \ge 2$ for the first time at $n = n_A$, then n_A is the integer closest to $e^{A-\gamma}$, where γ is Juler's constant 0.57721 56649 ... (γ is now known to 7114 decimal places [1].) It was shown in [2] that this holds provided that $e^{A-\gamma} + 1/2$ is not too close to an integer; specifically, if $|e^{A-\gamma} - m| \le 2 - 0.1/m$ or $\ge 2 + 1/m$, where $m = [e^{A-\gamma}]$.

In this note I prove the following more precise result. Theorem. $n_A = [e^{A-\gamma}]$ if $e^{A-\gamma} - m < \% + (\frac{1}{24} - \epsilon)/m$, and $n_A = [e^{A-\gamma}] + 1$ if $e^{A-\gamma} - m > \% + 1/(24m)$, where $e \Rightarrow 0$ as $A \Rightarrow \infty$ and ϵ can be taken to be 0.006 for all $A \ge 2$.

This does not disprove the conjecture, although it makes it seem somewhat less plausible. A machine computation of n_A for $A \le 200$ revealed no case where even the cruder criterion of [2] was not more than adequate to determine n_A . As a curiosity, I note that $e^{200-Y} = 4.05709 \ 15001 \ 19742 \ 42417 \ 27292 \ 15083 \ 27003 \ 86982 \ 29075 \ 38568 \ 62003 \ 86928 \ 96447 \ 08306 \ 50133 \ 72179 \ 59917 \ 61318 \ 27522 \times 10^{86},$

so that n_{200} is the integral part of this number (ending in ...99176).

I am indebted to John J. Jrench, Jr. for the 150 D value of $e^{-\gamma}$ that made the computations possible; and

fol/

to Lester M. Carlyle, Jr. for communicating the results of some computations which suggested that a theorem of this kind should exist.

I take this opportunity to note the following errata to [2]: In Theorem 1, last line, read m for n (twice). On p. 866, in the line before formula (1), read $-\frac{1}{8}n^{-2}$. On p. 868, lines 9 and 10 (statements (ii) and (iii)) read m for n.

Proof of the theorem. If s_n is the nth partial sum of the harmonic series, the Luler-Maclaurin formula yields

Sn=y+logn+ 1 - 12n2+R,

where R can be estimated much as in [4, p. 539] and satisfies $0 \le R < 0.004 \text{ n}^{-4}$.

Suppose now that $s_n > A$, and write $m = [e^{A-\gamma}]$. We know from [3] or [2] that $n \ge m$, and that n_A , the smallest value of n, is at most m+1.

In the first place, since $s_n > A$, we have

and hence

(1)
$$n \exp \left[\frac{1}{2n} - \frac{1}{12n^2} + R\right] > e^{A-r}$$

How expand the exponential in (1) in powers of the quantity in square brackets, with remainder of order 4, and collect terms. Te find that

(2)
$$n + \frac{1}{2} + \frac{1}{24n} - \frac{1}{48n^2} + \frac{\epsilon}{n^3} > e^{A-\gamma}$$

where $|\epsilon| < 0.007$ if $n \ge 2$. Suppose now that

(3)
$$e^{A-7} > m + \frac{1}{2} + \frac{1}{24m}$$

Then

$$m + \frac{1}{2} + \frac{1}{24n} - \frac{1}{48n^2} + \frac{\epsilon}{n^2} > m + \frac{1}{2} + \frac{1}{24m}$$

i.e.

But since $n \ge m$ and $|\varepsilon| < 1/48$, this implies that n > m. Hence $n_A > m$. Since $n_A \le m+1$, this means that $n_A = m+1$ if (3) holds.

In fact, the argument establishes somewhat more, namely that n_{Λ} = m+1 if

where $\eta < 0.002$.

On the other hand, we have $s_n < A$ when $n = n_A - 1$. With this value of n, then,

and hence

Suppose that

where n > 0.006. Then

$$n < m - \frac{1}{24n} + (\frac{1}{24} - \eta) \frac{1}{m} + \frac{1}{48n^2} + \frac{|E|}{n^3}$$
< m.

But $n = n_A - 1$ so $n_A < m+1$, whence $n_A = m$.

References

- 1. W.A. Beyer and M.S. Waterman, Error analysis of a computation of Euler's constant, Math. of Comp. 28 (1974), 599-604.
- 2. R.P. Boas, Jr. and J.W. Wrench, Jr., Partial sums of the harmonic series, Amer. Math. Monthly 78 (1971), 864-870.
- 3. L. Comtet, Problem 5346, Amer. Math. Monthly 74 (1967), 209.
- 4. K. Knopp, Theory and application of infinite series.
 London-Glasgow, 1928.

Northwestern University