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ON STERN'’S DIATOMIC SERIES
By D. H. LEHMER, Brown University

The purpose of the present paper is to extend the investigation of the follow-
ing “Diatomic Series” studied by Stern.!
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Each line of this table is formed from the preceeding one by inserting be-
tween consecutive elements their sum. The lines of this table, of which there
are infinitely many, are numbered as indicated on the left.

Stern has proved a number of interesting facts concerning this series among
which are the following:

1. The number of terms in the n-th line is 2*+1, and their sum is 3*+1.
2. The number of terms in the table down to and including the #-th line
is 2"+ 4% and their sum is (3" 41) +n. :

1 Journal fiir Mathematik, vol. 55, page 193.
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3. The average value of the terms in the n-th line is nearly (3/2)" which
is twice the average value of the terms in the whole table down to and including
the n-th line.

4. The table is symmetric: the k-th term on the nth line is equal to the
(242 —k)th term.

5. The terms which appear in the n-th line as the sums of their two
adjacent terms are called dyads of the n-th order. There are 2*! dyads of the
n-th order and 2"'41 non-dyads. The dyads occupy the positions of even rank
in the line. 3

6. In the sequence of terms (e, b, ¢), (a+¢)/b is an integer.

7. If the sequence (a, b, ¢) appears in the n-th line the dyad b occurs in the
(n—k)th line where k= (a+c—05)/2b.

8. Two consecutive terms have no common factor.

9. The sequence (a, b) can occur but once in the table. |

10. If @ and b are relatively prime the sequence (a, b) appears in the line
whose number is one less than the sum of the quotients appearing in the ex-
pansion of a/b in a regular continued fraction.

11. The number % cannot appear as a dyad in the n-th line if n2k.

12. The number of times an element k. appears in the (k—1)st and all
succeeding lines is Euler’s ¢(%).

13. The number p is a prime if and only if it appears (p—1) times in the
(p—1)st line.

We proceed to a closer study of the series. A term of the series is determined
by its line and its rank in that line. We shall exhibit an algorithm for finding
the value of the term in the k-th line and of rank R.

Theorem 1. If a number has the rank R, in the n-th line it appears directly
below in the (n+k)th line with the rank:

(1) B = IME. =170 1

In fact this formula is easily seen to satisfy the necessary recurrence: R, «
=2R,+t—1—1, and to have the proper initial value for k=0. If R, is equal to
one, we see that the rank of one is always one. Itis easy to see that the number
m appears in the (m—1)st line as a dyad of rank 2. Applying the preceding
theorem with R=2 we see that the rank of m in the n-th line is 2" "+14-1.
This being true for all values of m <n+1, it follows that the (m—1)st line
contains all the natural numbers from 1 to m in descending order, the integer
| appearing at the rank 2m~'41. Thus the 4-th line contains the numbers
S 4 3 2 1 With the ranks of - 2, 4 5 9, 1 respectively.

If r, and 7. are consecutive entries in the n-th line and r,>7,, then 7, 1s a
dyad. In the line above there are the two entries (ry—rq, 7). if ri—ra>r,,
7, is again a non-dyad and in the (z—2)nd line there will appear the sequence
(ry—2rs,7). But if on the other hand r,—7,<rs, then r; is a dyad and the
(n—2)nd line will reveal the sequence (7, —7r2, 2r2—r1).
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In fact if
'L ™ U178 . 73,
2 = 0273 -} rs,
i B R L + rs,
(2)

'm—2 = qm—2 "m—1 + Ym
we pass upwards ¢; lines to the top of the column of . where the sequence
(73, 72) occurs. Taking the column of non-dyads 7; we move upwards ¢, lines to
the sequence (73, 74,) and so on until we at last reach the sequence (7,,—1, 7n) Or
else (7m, 7m—1) according as m is even or odd. But 7, and 7,, being consecutive
terms, are prime to each other so that we at length run into the edge of the table
at P isor tl red)
From the above equations we can write 7;/7; as a continued fraction:

7’1/7‘2 - [(11, B85 08, "™ * 5 Um—2; 7’m-1].

Since the sequences (7,,—1, 1) or (1, 7,,_;) are on the (r,,_, — 1)st line, it follows
that (71, 7o) occurs on the n-th line where

=htegtaoat- -rag—1,
which is in fact Stern’s result 10.

If instead of choosing a sequence (71, 7;) we select values of g1, g2, ¢s * * * 7m—s
such that their sum is #+1, and calculate the corresponding continued fraction
we will get a sequence (74, 72) on the n-th line; for the equations (2) may be solved
backwards for the »; knowing the g..

Since there are 2"+41 terms in the n-th line we can form 2" fractions 7,/7.
Since the table is symmetric for every fraction r,/7, we have a corresponding
fraction r,/7;. The quotients in the expansion of these two fractions are identi-
cal, except that in the case of the proper fraction, the set of quotients is pre-
ceded by zero. If we change the complete quotient 1/(r,.—s), which is never
unity, to 1/[rm—1—14(1/1)] in the expansion of the proper fraction and dis-
regard the zero quotient ¢o, the number of quotients and their sum will remain
unchanged. Since the sequence (7, 73) occurs but once in the table we have by
this device a set of quotients corresponding to each fraction in the line with no
two sets identical. The number of these sets is 2" which gives at once the proof
of the theorem in the theory of partitions that the number of ways of expressing
n+1 as the sum of positive integers is 2%, sums differing only in the order of
their terms being counted as distinct.

If 71/, expands with an odd (even) number of quotients, 7,/7; has an even
(odd) number of quotients. In other words for every expression of n+1 as a
sum of an odd number of integers, there corresponds one and only one set of
even number of integers whose sum is #+1. This establishes the theorem that
the numbers of ways of expressing #-+1 as a sum of an odd or even number of
integers are the same and are equal to 2.
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By finding all the representations of n+1 as the sum of integers we can
calculate all the sequences (71, 72) on the n-th line. The question now arises
how to distribute these sequences on the line. In a particular case the distribu-
tion can be effected by tentative methods using the facts 4, §, 6 and others.
But we shall develop a formula which assigns to any number (71) in the sequence
(ry, 7o) a definite rank. A given sequence (r1, 72) appears on the left or right
side of the table according as the number of quotients in the expansion of 7/ 72
is odd or even. We can always suppose that the given sequence (71, 72) is such
that the continued fraction for 7,/7, has an even number of quotients and 1s
such that 7y >7..

For if 7,/7, has an odd number of quotients and is thus on the right side of
the table, the fraction 7./7; on the left has an even number. If ro>r; then the
adjacent sequence (rs, 72—r1) can be taken in lieu of the given sequence. When
we find the rank of 7; on the left side, the rank of 7, on the right can be easily
calculated. For example if we wish to find the position of 85 in the sequence
(85, 16) we expand the continued fraction 85/16=[5, 3, 5]. Thus (85, 16) ison
the 12th line on the right hand side. If we know the rank of 85 in (16, 85) which
is on the left side of the table we can answer our question by subtracting this
rank from 21242. But (16, 85) is followed by (85, 85—16) or (85, 69). We find
that! 85/69 = [1, 4, 3, 5] which has in fact an even number of quotients. Refer-
ring to equations (2), the rank of a dyad 7,1 in the (#m—1—1)st line is 2.
According to our Theorem 1, the rank of 7,u—1, gm—2 lines down is 2241 and
that of its right hand neighbour 7,2 is 2¢»~2. Then gm—s3 lines farther down the
number 7,._» has the rank 2en-3 (2en—2—1)+1, and its right neighbour 7,3 has

the rank
2 am—3tam—2 — 2 am—3 + ¢

Similarily the rank of 7,4, ¢m—s lines farther down is

2qm—4+qm—3+qm—2 — 2<Im-4+qm—3 + 2am—4

Finally the rank of 7, on the right side of the line 7 is

(3) R = Qaitartest---+am—2 — Qartart--ctam—3 L ... — Qartez 4 241,

We shall next consider the problem of finding the number r; which has a
given rank R in a given line n. If R>2""" we can consider instead the corre-
sponding rank 2"+2— R which is less than 2"~ If R is odd, the number r, is
a non-dyad in the n-th line and we can follow 7, back to the (n—k)th line where
it becomes a dyad, and hence has an even rank. By Theorem 1, k is the largest
power of 2 in R—1 and the rank of 7 in the (n—k)th line is Ry =(R—1)27*+1.
Thus we have only to consider the cases in which R is even and less than 271
Let now 7. be the left neighbour of », and let

?'1/7'2 o [Q1, gz (s * ° (n-2, fm_1]

1 The labor of making the second expansion is obvia ted by noting that if rn/re=qgqs - - - |,
thenn/(n—r)=[1,a—1,q - ]or [ga+1, g3, G5 - ], according as 7, > 2r; or 1, <2rs.
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The rank of 7, is given by equation (3). We have only to determine the quo-
tients ¢;. The first quotient ¢, is simply the highest power of 2 in the given R,
g2 1s the highest power of 2 in R-2-1—1, g5 is the highest power of 2 in
(R-21—1)2-¢241 and so on.

In this way we can determine the successive partial quotients in the expan-
sion of 7;/r,. Thus far we have not taken into account the number of the line 7.
The complete quotient Ym—1 is determined as the difference between 741 and
the sum of the partial quotients. Thus we see that the complete quotient 7,,_,
is a function of the line # for a given rank R. It follows from the theory of con-
tinued fractions that the numbers which occupy the same rank in successive
lines are in arithmetical progression whose common difference is the numerator
of the penultimate convergent. The value of 7, for a given line can now be
readily computed from the continued fraction expansion of r,/7,.

Example: What number on the hundredth line has the rank of one million?

201(20rtart-am—s — ... 4 1) = 1000000 71=06
R e 1) = 1560 qs = 3
A 1) e fo5 qs = 1
e s . — 1) = 976 qs = 4
EHEM et ... 4 1) = 62 gs = 1
s ST | S ) gs = 1
F A S e R + 1) = 16 g7 = 4

Z7fls' =20

=1

fm1 = rs = 101 — 20 = 81, ri/ry = [6,3,1,4,1,1,4,81].

Calculating the value of r1/rs, we have r, =97139.

In the preceding discussion we have found answers to our problems in terms
of certain algorithms. We shall pass on to the consideration of series of dyads
whose values are given by a definite formula.

Theorem 2. If the sequence (ry, 75) occurs in the n-tj; line with r\>r, and the
rank of r, being R, the smallest dyad occuring between the terms ry and ry on the
line n+kis r, +kry and its rank is 2¢R.

Consider the portion of the table in which we are interested.

n r1 ra
n+1|r r1 =+ 7 re
n-42|r, 2ry + 7, r1 + 7o 71 + 2r, 79
n+3lry 3ry+ r, 2ry + 7, 3ri+2r, r, + rs 2ri4+3rs r, + 2ry r1 + 37, o

In the line n+2, the smallest dyad between 7, and 72 1S 714-2rs, since ;> 7.
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Applying the same reasoning to the sequence (r1+7e, 72), the smallest dyad on
the (n43)rd line is 71+ 3rs, etc. The rank of each minimum dyad at each step
is one less than that of r.. By Theorem 1, after & moves, the rank of r1+krs is
2R, which is the theorem.

In general if (71, r1+72, rs) be any three consecutive numbers in thé (n+1)st
line, the largest dyad in the (n+2)nd line between 71 and 7. is obtained by start-
ing from the dyad 71+72 and moving down one line and towards its largest
neighbour. Thus if 71>7s, we would move to the dyad 271+7. Since r+r2>n
we would next move down to the right to the dyad 3r1+2rs. :

We shall define by a zig-zag move one which is continually descending and
changing its direction from left to right and from right to left etc. at each line.
A right (left) zig-zag move starts down towards the right (left). Continually
applying the above reasoning we have the theorem:

Theorem 3. If the sequence (1, rs) for ry>re appears in the n-th line the right
zig-zag move passes over dyads which are grealer than any other elements between
r, and ry 1n any line.

Corollary. In any line n>1 there are two equal terms which are larger than all
the other terms on the line.

This follows at once from considering the sequence (1, 3, 2) and the sym-
metry of the table. We shall return to these maximum dyads later. We next
consider the rank of any dyad after k steps of a right zig-zag move starting with
a term of rank R,. The first step brings us down towards the right to r1+72, a
dyad of rank R, = 2R, by Theorem 1. The next move takes us down to the left
to a dyad of rank R. = 2R, — 2, and after k steps we stop on the dyad in question
of rank: :

(4) Ry = 2R — [1 + (=D A |23207
The solution of this difference equation gives us:
Re=3{2¢+ 2+ [14 (- D¥]} + 28R — D).

[t is easy to verify that this solution satisfies the required recurrence (4) and
that for £ =0 it has the proper value Ro. For a left zig-zag move the recurrence
i

Re = 2Ri1 — [1 4+ (— D*1],
the solution of which is seen to be

R, =d—=2+4—[1+(= 1)k+1]} 4 25(Ro — 1).

These zig-zag moves have another important property namely: the dyads
passed over are such that any one is equal to the sum of the preceding two
dyads. For in the above diagram

37, + 2rs = (211 + re) + (r1+ ro) for the left move,

and
27y 4 3rs = (1 + 2rs) + (r1 + re) for the right move.
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The property is proved by induction.
We have then to deal with sets of dyads which satisfy the difference equa-

tion:
Wars = Wopr + Wa.

The general theory of the recurring series of the second order has been con-
sidered at length by Lucas.! The series W, are determined when one assigns
definite values to W, and W;. If W,=0. W;=1 the series W, is the celebrated

Fibonacci or Pisano series:
PSH-E 0.1.1.2. 35818 21 34, 55,89 144. 233, 317 610, « = - Q'L‘f;
and the value of the n-th term is:
1 + /5 N 1 — \/5 n g
U. © Sy I VD M v rﬂ
2n\/5

The series is fundamental in our discussion. If W, and W; assume other values
than (0, 1) it can be shown that

Wa= WU, + WoUp,

where U, is the n-th term of the Fibonacci series. Making use of this fact we can
write down the value of the dyad occuring at the end of & steps of a right or
left zig-zag move. It is only necessary to know the first two dyads W, and Wi.

The maximum dyad on each line deserves special attention. Taking the

lines n=0, 1 we have for Wy=1, W);=2,
I’Vn — 21]7& + Un—l — Un+2-
Hence we can state:

Theorem 4: In any line n the largest dyads have the common value
Uz = [(1 4 V/5)"2 — (1 — V/5)2]/2m2/5
and their ranks are )
A12820] R, %@+2+ [T = ) 2
A 28207

and
<A \ 2R 207) 2" 4+ 2 — R, = 3(2**1 4 4 — [1 + (— 1)n+1])- - Calts Az 8 207},{;#%#@

Again if we start with one in the second line and make a right zig-zag move
PSZOH' we pass over the dyads 1, 3, 4, 7, 11, 18, - - - . Here Wy=1, W1 =3. W.=3U, ﬁ QO‘-{—'
\ + U,_;. Substituting the expressions derived for U, and U,_; we have

Y e (1+\/5)n_ (1_\/5)11 (1+\/5)"_1—(1—\/5)n—1
W = 3[ = ]+ ——

BT e A

2n+1

1 American Journal of Mathematics, vol. 1, pp. 184-240, 289-321.
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These numbers are what Lucas terms V, We can state the following theorem:

Theorem 5: In any line n> 2 the largest dyads in the first and last quarters of
the line n have the common nalue;

(145 4 (1 — VI

2n+1

and the ranks
=it UL 1)»]} and 3{5-2'+4 - 14 (— "]

Any number of such theorems may be written out.

In general, if the values Wo and Wi are the first two dyads in a right zig-zag
move where Wy is in the n-th line with the rank R, there is on the (n+k)th line
the dyad

{ ++/5) — ({1 —V/5)* { 4 /5)1 = (1 — V)

whose rank is
L=t 1)k+1]} 4+ 2%(Ro — 1)
The same value is found [ lines farther down with the rank

21
(6) Ris = —3—{ ¥3Re—2) — 1+ 1+ (— 1)k+1]} + 1.

Let m be any line with m>n. Let m—n be represented as the sum of two
integers k+1 in all the m —n ways. Then there exist (m—n-+1) elements on the
m-th line whose values are obtained by putting the values of k in (5) and whose
ranks are obtained by putting the values of I and k in (6).

[t may be remarked that

”'rk/lyk——l i [1,111,1a1: gl 1,‘1k+1,‘1k+2 g Qm—2]-

It is hopeless to try to account for every dyad in the table by the zig-zag
moves, since there exist sequences (ry, 72) in the n-th line with all possiblearrange-
ments of quotients whose sum s n4+1. We might define other moves to give
other types of continued fraction expansions cach a1 2. 1. % T ARREE
2 3t he and an enormous variety of other simple types. But we
would still be at a loss to account for the infinitude of non periodic expansions
occuring in the majority of cases.

Example: The numbers r1=2960276935825111, yo= 1679421121698828
being selected at random, to determine whether the sequence (1, 72) appears
in the array and, if so, where. We find that

ri/rs = [1,1,3,4,1,2,7,1,7,7,1,5,10,7,1,3,1,2,1,10,1,3,1,4,5,9,3,1,6,16].

Therefore since 7; and 72 are prime to each other and the sum of the quotients
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is 124, the sequence appears in the 123rd line and on the left side of the middle
since there is an even number of quotients. In fact the rank is

R = 2108 — 2102 2101 _ 298 | 280 | ... 4 26 — 22 4
= 321666940077382478983219549565470.

The number of terms on this line is
2123 + 1 = 10633823966279326983230456482242756609 .

So the sequence (ry, 7,) is about 1/33058 of the way across the line. The average
value of the terms on this line is

(3/2)128 = 4562730984784777544048 ,
which is 15 million times larger than the number 7,. The largest term on this
line is
Uiss = 59425114757512643212875125

whose least rank is

R = 3544607988759775661076818827414252204.



