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 Abstract 
The CL, or coefficient list concept is a natural adjunct to many recursive formulas 
and algorithms. The basic idea is that coefficients may vary as iteration proceeds. 
This article explores the effect of CLs on a fascinating family of sequences; namely 
the close relatives of the eponymous numbers brought to our attention by Leonardo 
da Pisa (aka Fibonacci) circa 1200 CE. 
 
Terms of the Fibonacci sequence will derive, by Binet’s formula, from powers of 
the zeros of x2 – x – 1. By a mathematical rule-of-thumb, patterns spawned by 2nd-
degree equations have a 2-dimensional representation. The exposition that follows 
provides a context in which the familiar Fibonacci sequence is properly thought of 
as a single row/column of a (degenerate) 2D array. 
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A Derivation of the Limit Ratios of a Generalized Fibonacci Sequence 
We begin with a generalized Fibonacci formula 
 
 1 2 0 1( ) ( ) 0, 1n n nc F b F F F F+ ++ = = =  (1.1) 
 
Henceforth (1.1) will be called a φ-sequence or φ1. 
 
Theorem: For b,c in   (  = 1,2,3… ∞), the ratio of adjacent terms in φ1 converges to a real 
number, x. I.e., 
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Proof: In the limit: 2 2 1 1( ) ( ) ( )n n n n

n n n

F c F b F b F
x c bx c

F F F
+ + ++

= = = + = + , and 2 0x bx c− − = . 

 
Since the discriminant b2 – 4ac is always positive (see the quadratic formula in (1.2)), x is real. 
 

QED 
 
E.g., if b = 2 and c = 3, then φ1 = 0, 1, 2, 7, 20, 61, 182, 547, 1640, 4921, 14762…  
 
To what ratio does this sequence converge? Let x = r±. Then by the quadratic formula 
 

 
2 4

2
b b ac

r
a±

− ± −
=  (1.2) 

 
the roots of x2 −2x – 3 = 0 are r+ = 3 and r− = −1. 
 
Then, in the limit, the ratio of Fn to Fn−1 is (1.2), the quadratic formula itself.  
 

Note that rearranging (1.1) to 2 1( )n n
n

F b F
F

c
+ +−

=  generates terms leftward of F0. 

 
In the above example, terms to the left of F0 are (moving to the left from zero) 0.333…, −0.222…, 
0.259…, −0.247… …This part of the sequence converges to r−. 
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For convenience, let Q = x2 − bx − c. Now, by way of Binet's formula, 
 

 
n n
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r r
F

r r
+ −

+ −

−
=

−
 (1.3) 

 
the zeros (roots) of Q generate the nth term of φ1. 
 
E.g., take the sequence from above, 0, 1, 2, 7, 20, 61, 182, 547, 1640, 4921, 14762…. The roots of 
x2 − 2x − 3 are r+ = 3 and r− = −1. Let’s say n = 7. Then 
 

7 7
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− −
= =

− −
 

 
Thus, the characteristics of a φ1 sequence are encoded in the associated quadratic equation, Q. The 
patterns associated with a 2nd-degree equation are normally, naturally two-dimensional, yet (1.3) 
generates only a linear sequence. So these φ1 sequences are missing a dimension, it seems… 
 

Dynamic Coefficients 
Indeed, this 2nd dimension has usually evaded observation. It will be opened to exploration by the 
use of coefficient lists (CLs). The idea behind such lists is that the coefficients of variables Fn and 
Fn+1 are themselves a sequence, and terms in a list will apply sequentially as iteration proceeds. 
 
A more general version of (1.1) employs two coefficient lists, β and γ. 
 
 1 2 0 1( ) ( ) 0, 1n n nF F F F Fγ β + ++ = = =  (1.4) 

 
Where β and γ  are defined as 
 
 1 2 1 2[ , ]  [ , ]i jb b b and c c cβ γ= … = …   (1.5) 

Upon the first iteration of (1.4), b1 and c1 apply; on the second, b2 and c2 and so forth… 
 
Let the indices i and j = λ, so β and γ  each contain λ terms, where 1 ≤ λ < ∞. Then λ = the period 
of the sequence φλ. Again, as (1.4) is iterated and expanded recursively, the terms in β and γ apply 
sequentially, and, because λ < ∞, cyclically as iteration goes on. E.g., for λ ≥ 4: 
 
 4 1 2 1 2 3 1 2 3 1 2 3 2 4 4 1 2 3 1 4 2 3 4 1 2 3 40, 1, , , , ...b c b b c b c b b b b c c c b b c b b c b b b b b bϕ = + + + + + + +  (1.6) 
 
Note that β and γ, as defined in (1.5) may have different lengths; i.e., i and j respectively. So, given 
i ≠ j, we say that λ = LCM(i,j). This is for economy; else given, say, a φ6 sequence such as β = 
[1,2,3], γ = [1,2], it would be necessary to write out β = [1,2,3,1,2,3] and γ  = [1,2,1,2,1,2]. 
 
Now, for an example of numerical coefficient lists in action, take β [1,2,3] and γ [1] (where, for 
brevity, the = sign is implied). At the first iteration, the first (and only) term in γ  applies to F0, and 
the first term in β to F1: (1)0 + (1)1 = 1 = F2. On the second iteration, c = 1 and b2 = 2 apply to F1 
and F2 respectively: (1)1 + (2)1 = 3 = F3. For the third iteration, (1)1 + (3)3 = 10 = F4, and on the 
fourth iteration, the cycle starts over. This process generates the sequence below: 
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φ3 = 0, 1, 1, 3, 10, 13, 36, 121, 157, 435, 1462, 1897, 5256, 17665, 22921, 63507, 213442… 
 

Convergence to Multiple Limit Ratios 
Where the example sequence on page 1, φ1 = 0, 1, 2, 7, 20, 61, 182, 547, 1640, 4921… converges 
to the roots of a single equation, the positive (to the rightward of zero) section of φ3 above converges 
simultaneously to three ratios. These are, in the limit, the roots r1+ ≈ 3.3609, r2+ ≈ 1.2975 and r3+ ≈ 
2.7707, i.e., the positive roots of the quadratic equations Q1, Q2 and Q3. The next step is to fashion 
a procedure that generates Qj coefficients in terms of elements in β and γ. 
 
It will be seen that, in general, a sequence φλ converges to the roots of λ quadratics, Qj. The approach 
to finding the coefficients of these equations will be an extension of the strategy used for φ1. To 
this end, (1.4) is expanded below in an indeterminate form. 
 
As just explicated, a sequence φλ is generated by applying the terms of β and γ in order as iterations 
are performed. At the first iteration, the initial terms F0 and F1 are multiplied by c1 and b1 
respectively; at the second, F1 and F2 are multiplied by c2 and b2; for the third iteration c3 and b3 
apply and so on. After λ iterations, the cycle repeats, and for λ ≥ 2 the sequence begins like this: 
 

φλ ≥ 2 = F0,  F1,  (c1)F0 + (b1)F1 = F2,  (c2)F1 + (b2)F2 = F3 = (b2c1)F0 + (b1b2 + c2)F1… 
 
It so happens that there is sufficient information in any such single sequence to provide the 
coefficients for all of the associated Qj. This approach, however, spawns huge, unwieldy equations 
for even relatively small λ. As an alternative, note that any of the φλ has λ–1 ‘siblings’, and such 
information as they hold is most readily accessed when they are all utilized in tandem to form an 
array. The key to generating the constituent sequences of an array is the cyclical permutation of 
elements in the CLs β and γ. E.g., take β' [b2, b3… bλ, b1] and γ ' [c2, c3… cλ, c1], which generates 
the sequence φλ': 
 

φλ' = F0,  F1,  (c2)F0 + (b2)F1 = F2,  (c3)F1 + (b3)F2 = F3 = (b3c2)F0 + (b2 b3 + c3)F1… 
 
Then β'' [b3, b4… bλ, b1, b2], γ '' [c3, c4… cλ, c1, c2] generates the sequence φλ''; β''' [b4… bλ, b1, b2, 
b3], γ ''' [c4… cλ, c1, c2, c3] generates φλ''' and so on. 
 
Such φλ sequences aligned as an array will be represented as Φλ [b1, b2… bi][c1, c2… cj]. The familial 
φλ sequences such arrays comprise will be notated as Sj. On route to this, though, is a look at ways 
in which a single φλ sequence may be mined for the coefficients of all its associated Qs. 
 

A Single-Sequence Method that Solves for Qj’s Coefficients 
Take for example a φ2 sequence, β [b1, b2], γ [c1, c2]. For ,β γ ∈ , the ratios of adjacent terms 
rightward of F0 = 0 converge alternatively to r1+ and r2+, the positive roots of the equations Q1 and 
Q2 respectively. To find the coefficients of Q1, we take four consecutive terms of φ2: 
 

1 2 1 1 1 3 2 1 1 2 2 1( ) ( ) ( ) ( ), , ,n n n n n n n nF F F c F b F F b c F b b c F+ + + + += + = + +  
  

Then in the limit as n → ∞: 1 3
1

2

n n

n n

F F
x

F F
+ +

+

= =  and 1 2 3n nx F F+ +⋅ =  

Multiplication by x1 gives 2
1 2 1 3n nx F x F+ +⋅ = ⋅  
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Or, in terms of Fn and Fn+1: 2 2
1 1 1 1 1 2 1 1 1 2 2 1 1( ) ( ) ( ) ( )n n n nc F x b F x b c F x b b c F x+ +⋅ + ⋅ = ⋅ + + ⋅  

But 1

1

n
n

F
F

x
+= , so 2

1 1 1 1 1 1 2 1 1 1 2 2 1 1( ) ( ) ( ) ( )n n n nc F x b F x b c F b b c F x+ + + +⋅ + ⋅ = + + ⋅  

Then dividing by Fn+1 and collecting terms; 
 
 2

1 1 1 1 2 1 2 1 2 2( ) 0Q b x b b c c x b c= − − + − =  (1.7) 
 
For a numerical example, take Φ2 [1,2][1]. Iterating per the CL definition gives the sequence: 
 

S1 = 0, 1, 1, 3, 4, 11, 15, 41, 56, 153, 209, 571, 780, 2131… 
 
Solve F11/F10 = 571/209 for the ratio 2.7321… Now, substituting terms from β [1,2], γ [1] into (1.7) 
gives 2 2

1 1 1 1 11 (1 2 1 1) 2, which equals 2 2Q x x x x= − ⋅ − + − − − , and r1+ ≈ 2.7321. 
 
The coefficients of Q2 may then be found by cyclically permuting the indices of the coefficients of 
Q1 in (1.7). Another alternative is to start from the beginning, i.e., perform the above derivation of 
the coefficients with the terms in β and γ permuted, as shown below. Obviously this last method 
takes more work: 
 
 nF  

1nF +  
 2 2 2 1( ) ( )n n nF c F b F+ += +  
 3 1 2 1 2 1 1( ) ( )n n nF b c F b b c F+ += + +  
 

2
2 2 2 1 2 2 1 2 1 2( )Q b x b b c c x b c= − − + − results from the methods outlined above. Substituting from β 

[1,2], γ [1] gives 2
2 22 2 1x x− − , and r2+ ≈ F12/F11 = 780/571 ≈ 1.3660. 

 
In the above, an equation that solves for the roots of Q1 derives from setting x1 equal to two fractions 
expressed indeterminately in terms of φ2. Cyclical permutation of Q1’s indices then provides the 
coefficients for Q2. 
 
Next, for any λ, a general method for expressing the coefficients of Q1 in terms of the elements in 
β and γ  is described in the following steps: 
 
• Beginning at Fn, take λ + 2 consecutive terms of φλ: Fn, Fn+1… Fn+λ, Fn+λ+1 

• Then set 1 1
1

n n

n n

F F
x

F F
λ

λ

+ + +

+

= =  

• Clear the second fraction and express Fn+λ and Fn+λ+1 in terms of Fn and Fn+1 

• Multiply both sides by x1. Now, because 1

1

n
n

FF
x
+= , Fn can be transformed to Fn+1 

• Dividing out Fn+1 then leaves a 2nd degree equation in x1, with coefficients that are expressed 
as terms from β and γ 
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A derivation of Q1 for a φ3 sequence β [b1, b2, b3], γ [c1, c2, c3] by this regime is illustrative. First, 
the sequence is expanded out to five terms: 

nF  

1nF +  

2 1 1 1( ) ( )n n nF c F b F+ += +  

3 2 1 1 2 2 1( ) ( )n n nF b c F b b c F+ += + +  

4 2 3 1 1 3 1 2 3 1 3 3 2 1( ) ( )n n nF b b c c c F b b b b c b c F+ += + + + +  

Next the fraction in 4
1

3

n

n

F
x

F
+

+

=  is cleared; 1 3 4n nx F F+ +⋅ =  is then expressed in terms of Fn and Fn+1, 

and both sides are multiplied by x1: 
 
         2 2

2 1 1 1 2 2 1 1 2 3 1 1 3 1 1 2 3 1 3 3 2 1 1( ) ( ) ( ) ( )n n n nb c F x b b c F x b b c c c F x b b b b c b c F x+ +⋅ + + ⋅ = + ⋅ + + + ⋅   (1.8) 

Substitute 1

1

n
n

F
F

x
+= in the above to eliminate Fn, divide by Fn+1 and collect the terms: 
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1 1 2 2 1 1 2 3 1 3 2 1 3 2 1 2 3 1 1 3( ) ( ) ( ) 0Q b b c x b b b b c b c b c x b b c c c= + − + − + − + =  (1.9) 
 
Then for β[1,2,3] and γ[1,2,3], Q1 = 2

1 14 13 9x x− − . Cyclical permutation of the terms in β and γ, 

(or indices of Q1 in (1.9)) gives Q2 = 2
1 19 5 8x x− −  and Q3 = 2

1 14 11 12x x− − . So, the sequence S1 
= 0, 1, 1, 4, 15, 19, 68, 261… converges to the roots r1+ ≈ 3.8364, r2+ ≈ 1.2607 and r3+ ≈ 3.5865. 
 
As a practical matter, this method is impossibly cumbersome for large λ: e.g., a λ = 10 equation 
has about 1600 β and γ terms in its coefficients. This difficulty however is to a great extent mitigated 
in the context of numerical arrays, in which burdensome symbolic expressions are reduced to more 
compact and manageable terms. The symbols-to-numbers transition is described below. 
 

A General Quadratic in xj Solves for All Limit Ratios in Φλ 
To show how the process of deriving coefficients may be simplified, a set of φ3 sequences will be 
aligned as an array. Where the symbolic version of the φ3 sequence in (1.8) provided components 
for the coefficients of Q1 in (1.9), now set Fn = F0 to construct a more specific array. 
 
Once the sequence S1 is established, cycling the indices of the coefficients gives S2 and S3. 
 

Table I 
Φ3 [b1, b2, b3][c1, c2, c3]   
 S1 S2 S3 
F0  = F0 F0 F0 
F1  = F1 F1 F1 
F2  = (c1)F0 + (b1)F1 (c2)F0 + (b2)F1 … 
F3  = (b2c1)F0 + (b1b2 + c2)F1 (b3c2)F0 + (b2b3 + c3)F1 … 
F4  = (b2b3c1 + c1c3)F0 + (b1b2b3 + b1c3 + b3c2)F1 (b1b3c2 + c1c2)F0 + (b1b2b3 + b1c3 + b2c1)F1 … 

 
Multiplying by F0 = 0 and F1 = 1 simplifies the situation considerably, but at the cost of causing 
some important information to disappear. 
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Table 2 
 S1 S2 S3 
F1 1 1 1 
F2 b1 b2 b3 
F3 b1b2 + c2 b2b3 + c3  b1b3 + c1 
F4 b1b2b3 + b1c3 + b3c2 b1b2b3 + b2c1 + b1c3 b1b2b3 + b3c2 + b2c1 

 
A comparison of the two tables shows that the zeroing out process has resulted in a substantial loss 
of information, the importance of which will be emphasized below. As a first step, recall that 
coefficients in (1.9) were found by setting F4 over F3, which can be written like so: 
 

 2 3 1 1 3 1 2 3 1 3 3 2 1
1

2 1 1 2 2 1

( ) ( )
( ) ( )

n n

n n

b b c c c F b b b b c b c F
x

b c F b b c F
+

+

+ + + +
=

+ +
 (1.10) 

 
The information in (1.10) is that which was manipulated to produce the formula in (1.9). However, 
in numerical expressions of φλ, the initial terms as defined in (1.4) are always F0 = 0 and F1 = 1. 
Thus when Fn = F0, the terms (b2c1) and (b2b3c1 + c1c3) in the equation above will vanish, and so 
(1.9) would now appear as below: 
 
 2

1 1 2 2 1 1 2 3 1 3 3 2 1( ) ( ) 0Q b b c x b b b b c b c x= + − + + =  (1.11) 
 
(1.11) solves for F4/F3, but not for the numbers to which S1 in Φ3 will eventually converge. Yet 
reference to table 2 shows that, serendipitously, terms zeroed from S1 are available in the adjacent 
column S2, although each lacks their common factor c1. The strategy then is to construct a formula 
(expressed as an equation) that restores (1.11) to (1.9). 
 
The self-similarity inherent in these arrays allows a generalized formula to apply to every column 
in Φλ. We’ll see later that this generality extends to rows (periodically) as well. For now, we’ll 
reference the array in table 2 and derive a general formula from that. 
 
Some additional notation facilitates expression of the formula, so let the initial index of ,i jF  (where

,i jF is an element of an array Φλ) represent its row and the second its column. Then let Fλ denote 
the ‘baseline’ of Φλ; that is, the row of number coincident with the period length λ. The coefficients 
a, b and c of Qj are now expressed in terms from Sj and Sj+1 in the following manner: 
 
 , 1 , 1 , 1 , 1; ( ) ;j j j j j ja F b F c F c c Fλ λ λ λ+ − + += = − ⋅ = − ⋅  (1.12) 
 
Referencing (1.11) vis-à-vis (1.9), nothing was lost from the a coefficient, so in (1.12) it remains 
unchanged. The c coefficient of (1.9), missing entirely in (1.11), is retrieved from the next column 
(Sj+1) on the same row. Then still in that same column, but going back a row, we find the fragment 
that completes b. The new equation looks like this: 
 
 2

, 1, 1, 1 , 1( )j j j j j j j j jQ F x F c F x c Fλ λ λ λ+ − + += ⋅ − − ⋅ − ⋅  (1.13) 
 
For verification, (1.13) applied to S1 and S2 in table 2 returns the equation in (1.9): 
 

2
1 1 2 2 1 1 2 3 1 3 2 1 3 2 1 2 3 1 1 3( ) ( ) ( )Q b b c x b b b b c b c b c x b b c c c= + − + − + − +  
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Extraction of Qj Coefficients from Numerical Arrays 
If Φ3 is generated in numerical form, though, then this clutter of symbols disappears. E.g., take the 
array Φ3 [1,2,3][1,2,3] in table 3 below. 
 

Table 3 
Φ3 [1,2,3][1,2,3] S1 S2 S3 S1 S2 S3 S1 S2 … 

F0 0 0 0 0 0 0 0 0  
F1 1 1 1 1 1 1 1 1  
F2 1 2 3 1 2 3 1 2  
Fλ 4 9 4 4 9 4 4 9  
F4 15 11 14 15 11 14 15 11  
F5 19 40 54 19 40 54 19 40  
F2λ 68 153 68 68 153 68 68 153  
F7 261 193 244 261 193 244 261 193  
F8 329 692 936 329 692 936 329 692  

 
The arrows connect the terms of Φ3 that are needed to construct the coefficients of Q1 according to 
(1.12). Obviously there is information in table 2 well beyond that required to find the coefficients 
of Q1, Q2 and Q3. This is due partially to redundancy, as columns repeat in a cycle of λ. Since the 
second index of Fi,j cannot exceed λ, we can forego this needless repetition. As for the rows, the 
equation in (1.13) requires that Fλ+1, j be available, but nothing beyond it. So, in this λ3 example, we 
need only nine numbers beyond the initial zeros and ones, as seen below: 
 
Φ3 [1,2,3][1,2,3]   

2
, 1, 1, 1 , 1( )j j j j j j j j jQ F x F c F x c Fλ λ λ λ+ − + += ⋅ − − ⋅ − ⋅  

 S1 S2 S3 

F2 1 2 3  2 2
1 1 1 1 14 (15 1 2) 1 9 4 13 9Q x x x x= − − ⋅ − ⋅ = − −  

Fλ 4 9 4  2 2
2 2 2 2 29 (11 2 3) 2 4 9 5 8Q x x x x= − − ⋅ − ⋅ = − −  

F4 15 11 14  2 2
3 3 3 3 34 (14 3 1) 3 4 4 11 12Q x x x x= − − ⋅ − ⋅ = − −  

 
Applying (1.13) to Φ3 [1,2,3][1,2,3] above gives the equations Q1, Q2 and Q3. The sequence 0, 1, 
1, 4, 15, 19, 68, 261… therefore converges to the positive roots r1+ ≈ 3.8364, r2+ ≈ 1.2607 and r3+ 
≈ 3.5865, as do sequences S2 and S3. These Qj are the same equations that were stated earlier, just 
below the equation in (1.9), verifying that the single sequence and numerical array methods provide 
identical results. 
 
Note that equations generated in this way share a single discriminant (D), where D = b2 – 4ac. In 
the case just above, D = 132 – 4 ⋅ –9 = 52 – 9 ⋅ –8 = 112 – 4 ⋅ –12 = 313. This will be of interest later 
on. 
 

_________________________________ 
 
Writer’s note: 
Steps involved in generalizing φ-sequences to arrays have, so far, been mostly empirical; picking 
out patterns by inspection and trying to describe them in terms of algorithms and equations. Up to 
now, it’s been obvious and easy, and a rigorous approach to the material would probably not require 
much more effort or time. But it’s about to become more complicated, and it may present some 
challenges to describe what follows in a formal style of theorems and proofs. Or maybe not. This 
article will continue with the ‘heuristic’ approach to identifying patterns. Anyone who discovers 
something of interest here is, of course, welcome to try to tighten it up...  
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Generalizations of Qj 
The equation for Qj in the form of (1.13) is a useful tool for delving into patterns that emerge as 
Fibonacci-type sequences with λ > 1 are expanded into two dimensions. Yet there are expressions 
of (1.13) that have greater generality and power. These versions have qualities that are requisite for 
certain applications, such as the 2D version of Binet’s formula that appears in (1.17). Derivations 
of these generalized formulas are presented below. 
 
First up is to enhance our notation. Let Q = ax2 + bx + c = 0 and we seek to define, for k an integer, 
the symbol Qk. To this end, consider r±, the roots of Q, in their quadratic formula representation. 
 

2 4
2

b b ac
r

a+

− + −
=  and 

2 4
2

b b ac
r

a−

− − −
=  

 
Then, since 2 ( ) ( )Q x r r x r r+ − + −= − + + ⋅ , we say 1 2 1 1 1 1( ) ( )Q x r r x r r− − − − −

+ − + −= − + + ⋅  
 

Thus if 1

2

2

4

a
r

b b ac
−
+ =

− + −
 and 1

2

2

4

a
r

b b ac
−
− =

− − −
  

then 1 1 4
4

ab
r r

ac
− −
+ −

−
+ =  and 

2
1 1 4

4
a

r r
ac

− −
+ −⋅ = . Hence 

2
1 2 2 2 24 4

( ) 4 4 4
4 4

ab a
Q x x acx abx a cx bx a

ac ac
− −
= − + = + + = + +  

 
Also, 1 0 2 1 1 1 1 2( ) ( ) 2 1Q Q Q x r r r r x r r r r x x− − − − −

+ + − − + + − −⋅ = = − ⋅ + ⋅ + ⋅ ⋅ ⋅ = − +  
 
In general, 2 ( ) ( )k k k k kQ x r r x r r+ − + −= − + + ⋅ . We’ll walk through Q2 for an example. 
 

2 2 2 2
2 2

2 2

2 4 2 4
and

2 2
b ac b b ac b ac b b ac

r r
a a+ −

− − − − + −
= = , so 

2 2
2 2 2 2 2 2 2 2 2 2 2

2 2

( 2 )
( ) ( ) ( 2 )

b ac c
Q x r r x r r x x a x b ac x c

a a+ − + −

−
= − + + ⋅ = − + = − − +  

 
For instance, if Q = x2 – 2x – 3, then Q2 = x2 – 10x + 9. 
 
Note then, that for any k the radical vanishes, and the coefficients of Qk will be integers. Now 
consider two distinct equations, Q and Q′. We will soon see, in numerous examples, that it is 
possible for the equation below to also have integer coefficients. 
 

2 ( ) ( )Q Q Q x r r r r x r r r r+ + − − + + − −
′′ ′ ′ ′ ′ ′= ⋅ = − ⋅ + ⋅ + ⋅ ⋅ ⋅  

 
A seemingly necessary, but apparently not sufficient condition on this is that the discriminants of 
Q and Q′ are of equal value (or one is an n2 multiple of the other, n = 1,2,3…). That said, take the 
formula in (1.1) and set b = c = 1. Iteration in both directions yields the familiar Fibonacci sequence. 
 

…−21, 13, −8, 5, −3, 2, −1, 1, 0, 1, 1, 2, 3, 5, 8, 13, 21… 
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This is of course, the Fibonacci sequence, (call it φ), which converges, leftward and rightward to 
the roots of Qφ  = x2 – x – 1 = 0. The positive root of this equation (or its inverse) is often called the 
divine proportion or the golden mean: rφ+ = 1.618034…, rφ− = −0.618034… The relationship of the 
roots of Qφ  to its b and c coefficients is rφ+ + rφ− = −b and rφ+ ⋅ rφ− = c. 
 
Consequently, equations kQφ  with integral coefficients are formed on the roots krφ±  by 
 

2 ( )k k k k kQ x r r x r rφ φ φ φ φ+ − + −= − + + ⋅  

But n nr rφ φ+ −+  is also a formula for Ln, which is the nth term of the Lucas sequence, where 
 

1 2 0 1( ) ( ) ; 2, 1n n nc L b L L L L+ ++ = = =  
 
Therefore, for b = c = 1, the Lucas numbers 2, 1, 3, 4, 7, 11, 18, 29, 47… are the b coefficients of 
successive ,kQφ  k ≥ 0. But the Lucas sequence can also be stated in terms of Fibonacci numbers as

1 1n n nL F F− += + . With that in mind, the array Φφ [1][1] is constructed on φ below. 
 
Note: the patterns that associated adjacent table 3 elements to form the coefficients of Qj in (1.13) 
are, as indicated by the arrows, extended throughout this array. 
 

Table 4 
Φφ [1][1]  S1  S2  S3  S4  S5  S6 … 

…        
F-4 -3 -3 -3 -3 -3 -3  
F-3  2  2  2  2  2  2  
F-2 -1 -1 -1 -1 -1 -1  
F-1  1  1  1    1  1  1  
F0  0  0     0  0  0  0  
Fλ  1   1  1  1  1  1  
F2  1  ↓  1  1  1  1  1  
F3  2  ↓  2  2  2  2  2  
F4  3  ↓  3  3  3  3  3  
F5  5  ↓  5  5  5  5  5  
F6  8  ↓  8  8  8  8  8  
F7 13 ↓ 13 13 13 13 13  

 
The equalities in (1.12) are now modified to form coefficients for kQφ  from terms in Φφ: 
 

1,1 1 ,1 1 ,1 1,1; ( ( 1) ); ( 1)k k
k k k ka F b F F c F+ − + += = − + ⋅ − = ⋅ −  

 
 2

1,1 1 ,1 1 ,1 1,1( ( 1) ) ( 1)k k k
k k k kQ F x F F x Fφ + − + += − + ⋅ − + ⋅ −  (1.14) 

 
According to the patterns in Φφ, the a coefficient is fixed. As k increases, the first term of b moves 
downward through the first column as the second term moves up and rightward on a diagonal, while 
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c slides across the columns on the first row. From (1.14), which embodies these patterns, the 
coefficients of kQφ for the first few values of k are given below. 
 

0 2 0 0 21 (1 1( 1) ) 1( 1) 2 1Q x x x xφ = − + − + − = − +  
1 2 1 1 21 (1 0( 1) ) 1( 1) 1Q x x x xφ = − + − + − = − −  
2 2 2 2 21 (2 1( 1) ) 1( 1) 3 1Q x x x xφ = − + − + − = − +  
3 2 3 3 21 (3 1( 1) ) 1( 1) 4 1Q x x x xφ = − − − + − = − −  
4 2 4 4 21 (5 2( 1) ) 1( 1) 7 1Q x x x xφ = − + − + − = − +  

 5 2 5 5 21 (8 3( 1) ) 1( 1) 11 1Q x x x xφ = − − − + − = − −  
 

Further Generalizations of QJ 
This shows that the array Φφ contains the information necessary to provide the coefficients for the 
equations with roots that are powers of rφ+. This extended pattern also applies to higher order arrays, 
but to navigate those realms requires modifying the notation again. To this end, the symbol for the 
exponent is now enhanced. 
 
By convention, Bk represents B to the power of k. For k a positive integer, this is a simple and 
convenient product notation; e.g., B3 = B·B·B. We will say in this case that the base B is monotonic. 
Now an underline to k in Bk will be taken to signify that B is polytonic, i.e., it comprises two or 
more elements (not necessarily all distinct), say, B = [t1, t2… tλ]. 
 
A property of B is that any term may be the initial, as in k

jt . For example, take B = β = [b1, b2, b3]; 

then 5
2b  = b2·b3·b1·b2·b3. (A potential problem with the underline arises in this example, as the 

superscript and subscript in 5
2b  may seem to combine to form a fraction. Bear in mind that fractional 

exponents will not appear in this context; but if they were necessary, the somewhat clumsy but still 

intelligible 
y

z
jb  could be used.) 

 
For further examples, if β [1,2,3] then, 5

2b  = 2·3·1·2·3 = 36. For Φ3 [1,2,3][2] then 7
2c  = 27. It could 

be said that in general any base is polytonic, but when each ti = tj, then k = k. Note that for a base B 
of λ elements, the product jtλ  is the same regardless of which element is chosen as the initial; i.e., 

1 2 3 ...t t t tλ λ λ λ
λ= = = . 

 
Problem: Define the exponent k for negative integer values 
 
Having derived (1.14) empirically from table 4, we go on to devise a more general expression for 
a period-λ pattern, Φλ [b1,b2… bλ][1]. Beyond underlining exponents, it’s necessary to ensure that 
the coefficients are taken from the proper rows. This entails that F’s initial subscript be equal to the 
period λ; thus every coefficient in the new formula will preface as Fλ, as in, say, Fλ–k,j+k. 
 
With this established, the pattern used in Φφ (table 4) applies now to the array Φ3 [1,2,3][1], in 
table 5 below: 
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Table 5 
Φ3 [1,2,3][1] S1 S2 S3 S4 S5 S6 S7 S8 

…         
F-4 -11 -10 -9 -11 -10 -9 -11 -10 
F-λ 3 7 4 3 7 4 3 7 
F-2 -2 -3 -1 -2 -3 -1 -2 -3 
F-1 1 1 1 1 1 1 1 1 
F0 0 0 0 0 0 0 0 0 
F1 1 1 1 1 1 1 1 1 
F2 1 2 3 1 2 3 1 2 
Fλ 3 7 4 3 7 4 3 7 
F4 10 ↓ 9 11 10 9 11 10 9 
F5 13 ↓ 25 37 13 25 37 13 25 
F2λ 36 ↓ 84 48 36 84 48 36 84 
F7 121↓ 109 133 121 109 133 121 109 
F8 157↓ 302 447 157 302 447 157 302 

 
Define k

jQ  as the equation that has its a coefficient in the column Sj, and the roots of which are the 

product rj ⋅ rj+1⋅ …⋅ rj+k−1 = k
jr  for rj+ and rj−. 

 
The equation in (1.14) is generalized so as to derive the coefficients of k

jQ  from Φλ: 
 
 2

, , , ,( ( 1) ) ( 1)k k k
j j k j k j k j kQ F x F F x Fλ λ λ λ+ − + += ⋅ − + ⋅ − + ⋅ −  (1.15) 

 
The formula in (1.15) is now applied to the Φ3 array above, and the coefficients of 1

kQ  for a few 
sequential values of k are shown below. 

 
0 2 0 0 2
1 1 1 1 13 (3 3( 1) ) 3( 1) 2 1Q x x x x= − + − + − = − +  
1 2 1 1 2
1 1 1 1 13 (10 2( 1) ) 7( 1) 3 8 7Q x x x x= − + − + − = − −  
2 2 2 2 2
1 1 1 1 13 (13 1( 1) ) 4( 1) 3 14 4Q x x x x= − + − + − = − +  

2 3 3 2
1 1 1 1 13 (36 0( 1) ) 3( 1) 12 1Q x x x xλ = − + − + − = − −  
4 2 4 4 2
1 1 1 1 13 (121 1( 1) ) 7( 1) 3 122 7Q x x x x= − + − + − = − +   
5 2 5 5 2
1 1 1 1 13 (157 1( 1) ) 4( 1) 3 158 4Q x x x x= − − − + − = − −  

 
Moving over to the column S2 gives the coefficients for 2

kQ . 
 

0 2 0 0 2
2 2 2 2 27 (7 7( 1) ) 7( 1) 2 1Q x x x x= − + − + − = − +  
1 2 1 1 2
2 2 2 2 27 (9 3( 1) ) 4( 1) 7 6 4Q x x x x= − + − + − = − −  
2 2 2 2 2
2 2 2 2 27 (25 1( 1) ) 3( 1) 7 26 3Q x x x x= − + − + − = − +  

2 3 3 2
2 2 2 2 27 (84 0( 1) ) 7( 1) 12 1Q x x x xλ = − + − + − = − −   

 4 2 4 4 2
2 2 2 2 27 (109 1( 1) ) 4( 1) 7 110 4Q x x x x= − + − + − = − +  

 5 2 5 5 2
2 2 2 2 27 (302 2( 1) ) 3( 1) 7 304 3Q x x x x= − − − + − = − −  
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A shift to S3 gives the coefficients for 3
kQ . 

 
0 2 0 0 2
3 3 3 3 34 (4 4( 1) ) 4( 1) 2 1Q x x x x= − + − + − = − +  
1 2 1 1 2
3 3 3 3 34 (11 1( 1) ) 3( 1) 4 10 3Q x x x x= − + − + − = − −  
2 2 2 2 2
3 3 3 3 34 (37 1( 1) ) 7( 1) 4 38 7Q x x x x= − + − + − = − +  

2 3 3 2
3 3 3 3 34 (48 0( 1) ) 4( 1) 12 1Q x x x xλ = − + − + − = − −  
4 2 4 4 2
3 3 3 3 34 (133 1( 1) ) 3( 1) 4 134 3Q x x x x= − + − + − = − +  

 5 2 5 5 2
3 3 3 3 34 (447 3( 1) ) 7( 1) 4 450 7Q x x x x= − − − + − = − −  

 
To reiterate, where the roots of kQφ were powers of rφ ±, the roots of k

jQ  here are products of some 
or all of three limit ratios in Φ3 [1,2,3][1]. More examples will help to clarify this idea. 
 

Given Sj in Φλ, then 1, 2 , ,
1 1

, 1, 1,

; ;n j n j n j
j j j

n j n j n j

F F F
r r r

F F F
λ λ λ λ

λ λ λ λ

+ + +
+ +

+ + −

→ → →  as n → ∞. 

 
In Φ3 [1,2,3][1], S1 = 0, 1, 1, 3, 10, 13, 36, 121, 157, 435, 1462, 1897, 5256, 17665… 
 

2 1,1 2
1 1 1 1

2 ,1

17665
One expression of  is , which   of 3 8 7 3.36092

5256

F
r Q x x

F
λ

λ

+
+≈ = − − ≈  

2 2,1 2
2 2 2 2

2 1,1

1897
of 7 6 4 1.29754

1462

F
r Q x x

F
λ

λ

+
+

+

= ≈ = − − ≈  

2 3,1 2
3 3 3 3

2 2,1

5256
of 4 10 3 2.77069

1897

F
r Q x x

F
λ

λ

+
+

+

= ≈ = − − ≈  

 
And r1+ ⋅ r2+ ⋅ r3+ = jrλ+  ≈ 12.08276…, a root of 2 12 1jQ x xλ = − − . 
 
A look at some discriminants of equations from the array Φ3 [1,2,3][1]: 
 

k
jQ �    D =   k

jQ �    D = 
2 2
1 3 14 4Q x x= − +  148   4 2

2 2 27 110 4Q x x= − +  148 * 92 
3 2
1 1 112 1Q x x= − −   148   5 2

2 2 27 304 3Q x x= − −  148 * 252 
4 2
1 3 122 7Q x x= − +  148 * 102  2 2

3 3 34 38 7Q x x= − +  148 * 32 
5 2
1 1 13 158 4Q x x= − −   148 * 132  3 2

3 3 312 1Q x x= − −  148 
2 2
2 2 27 26 3Q x x= − +  148 * 22  4 2

3 4 134 3Q x x= − +  148 * 252 
3 2
2 2 212 1Q x x= − −  148   5 2

3 4 450 7Q x x= − −  148 * 372 
 
The basic structure of these Φλ arrays is established; yet they have intriguing properties that remain 
to be explored. More on this is to follow in other articles. At this point, after all the effort to forge 
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our way into this new territory, suppose we just look around for a while, to try to get a feel for the 
lay of the land. 
 

Fibonacci Identities and Binet’s Formula in 2D 
First up, we’ll examine some of the Fibonacci identities. These are formulas that equate various 
terms of the φ-sequence in diverse and often unexpected ways. What happens to such an identity 
in Φλ? Let’s check out some examples… 

 
(i) 2 2 2

1 2 1 , , 1 1, 2 1,n n n n j n j j n j n jF F F F F c F Fλ λ λ λ+ + + + ++ = → ⋅ ⋅ + =      (where → is ‘maps to’) 
 
(ii) 1 1 2 , 1, 1, 1 2 ,( ) ( )n n n n n j n j n j j n jF F F F F F F c Fλ λ λ λ+ − + − +⋅ + = → ⋅ + ⋅ =  
 

(iii) 
2

, 1, 1 1, 1 2, 2
1 1 2 2 1 2 1, 1

n j n j n j n j j
n n n n n n j

j

F F F F c
F F F F F F

b
λ λ λ λ

λ
+ + − + − +

+ − − − − +

⋅ − ⋅ ⋅
⋅ − ⋅ = → =  

 
These formulas for Fn>0 are verified using the array in table 6 below. 
 

Table 6 
Φ3 [1,1,2,3][1,2] S1 S2 S3 S4 

     
F0 0 0 0 0 
 1 1 1 1 
 1 1 2 3 
 3 3 8 4 

Fλ 7 11 10 10 
 27 14 26 24 
 34 36 62 92 
 88 86 238 116 

F2λ 210 330 300 300 
 806 416 776 716 
 1016 1076 1852 2748 
 2628 2568 7108 3464 

F3λ 6272 9856 8960 8960 
 24072 12424 23176 21384 
 30344 32136 55312 82072 
 78488 76696 212288 103456 

F4λ 187320 294360 267600 267600 
 718936 371056 692176 638656 

 
Beginning with (i): If Fnλ , j =  Fλ ,1 ; then 7 ⋅ 11 ⋅ 1 + 272 = 806 = F2λ+1,1  

Fλ ,2 ; then 11 ⋅ 10 ⋅ 2 + 142 = 416 = F2λ+1,2 

F2λ ,3 ; then 300 ⋅ 300 ⋅ 1 + 7762 = 692176 = F4λ+1,3 

F2λ ,4 ; then 300 ⋅ 210 ⋅ 2 + 7162 = 638656 = F4λ+1,4 

 
For identity (ii): If Fnλ , j = Fλ ,1 ; then 7 ⋅ 27 + 7 ⋅ 3 ⋅ 1 = 210 = F2λ ,1 

    Fλ ,2 ; then 11 ⋅ 14 + 11 ⋅ 8 ⋅ 2 = 330 = F2λ ,2 

    F2λ ,3 ; then 300 ⋅ 776 + 300 ⋅ 116 ⋅ 1 = 267600 = F4λ ,3 

    F2λ ,4 ; then 300 ⋅ 716 + 300 ⋅ 88 ⋅ 2 = 267600 = F4λ ,4 
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Then, for (iii): If Fnλ , j =  Fλ ,1 ; then (7 ⋅ 14 − 3 ⋅ 2 ⋅ (1 ⋅ 2))/1 = 86 = F2λ−1,2 
    Fλ ,2 ; then (11 ⋅ 26 − 8 ⋅ 3 ⋅ (2 ⋅ 1))/1 = 238 = F2λ−1,3 

F2λ ,4 ; then (300 ⋅ 806 − 88 ⋅ 36 ⋅ (2 ⋅ 1))/3 = 78488 = F4λ−1,1 
 
(What happens if these Φλ formulas are applied over Fn < 0? A worksheet is provided on page 20 
for those who wish to investigate.) 
 
There is another way to verify these formulas that is rather interesting. Take this version of the 
sequence φ1: 
 
 1 2 0 1( 1) (2) , 1n n nF F F F y F y+ +− + = = = +  (1.16) 
 
For y an integer, working in both directions generates  , the ring of integers; i.e.: 
 

… –5, –4, –3, –2, –1, 0, 1, 2, 3, 4, 5… 
 
If we construct the array Φ(z) [2][–1] on (1.16) sequences, then the generalized identities i, ii, and 
iii above reduce to ordinary algebra: 
 

(i) →  (–1)y2 + (y + 1)2 = 2y + 1 
(ii) →  y((y + 1) + (–1)(y – 1)) = 2y 
(iii) →  (y(y + 1) – (–1)2(y – 1)(y – 2))/2 = 2y – 1  

 
Finally, consider a version of Binet’s ϕ1 formula (1.3) generalized for ϕλ: 
 

 , ,

n n
j j

j n j
j j

r r
F F

r rλ λ λ
+ −

+ −

−
⋅ =

−
 (1.17) 

 
Recall that Fλ ,j is the a coefficient of n

jQ . We’ll verify this formula with an example. Suppose that 
F7,1 (i.e., the 7th term of S1) in Φ3 [1,2,3][1,2,3] is to be determined. Then, since 7 = 2λ + 1, only 
the roots of Q1 and jQλ  are needed. The truncated array 
 
Φ3 [1,2,3][1,2,3] … S1 S2 S3 

 1  2  3  

Fλ  4  9  4   

15 11 14   
 
supplies the numbers to plug into the generalized formula 
 
 2

, , , ,( ( 1) ) ( 1) 0k k k k k
j j j k j k j k j j j k jQ F x F F c x F cλ λ λ λ+ − + += ⋅ − + ⋅ ⋅ − + ⋅ ⋅ − =   (1.18) 

Whence 2
1 1 14 13 9Q x x= − − . We can also use this Φ3 fragment to find roots of jQλ  by the formula  

 
 2

1, 1, 1( ) ( 1) 0j j j j j j jQ x F c F x cλ λ λ
λ λ+ − += − + ⋅ + ⋅ − =   (1.19) 

from which 2 17 6jQ x xλ = − − . 
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The equations in (1.18) and (1.19) above have roots: r1+ = 3.8365; r1− = −.5865; jrλ
+  = 17.3459; 

jrλ
−  = −.3459. Then 2 2

1 1j jr r r rλ λ

+ + − −
⋅ − ⋅  = 1154.3202 + .0702 = 1154.3904, and 

j jr rλ λ

+ −
−  = 17.6918. 

Then 1154.3904/17.6918 = 65.25, and 65.25 ⋅ 4 = 261. S1 = 0, 1, 1, 4, 15, 19, 68, 261… voila! 
 
In closing, here’s an array with a monotonic β. 
 

Table 7 
Φ3 [1][1,2,3]  S1 S2 S3 S4 S5 S6 S7 … 

…         
F-4 -4/18 -6/6 -5/12 -4/18 -6/6 -5/12 -4/18  
F-λ 3/6 4/6 2/6 3/6 4/6 2/6 3/6  
F-2 -1/6 -1/3 -1/2 -1/6 -1/3 -1/2 -1/6  
F-1 1/3 1/1 1/2 1/3 1/1 1/2 1/3  
F0 0 0 0 0 0 0 0  
F1 1 1 1 1 1 1 1  
F2 1 1 1 1 1 1 1  
Fλ 3 4 2 3 4 2 3  
F4 6 5 4 6 5 4 6  
F5 9 13 10 9 13 10 9  
F2λ 21 28 14 21 28 14 21  
F7 48 41 34 48 41 34 48  

 
Recall the array Φφ  in table 4, where each column is the φ-sequence, 0,1,1,2,3…. The formula for 
the second part of the b coefficient of kQφ  in (1.14) is 1 ,1 ( 1)k

k kF − + ⋅ − . Indices 1–k,1+k entail moving 
across the array in a diagonal direction; but these same numbers are available in every column, 
including the first, so in this case, diagonal motion isn’t necessary. We could find those same 
numbers by 1–k,1; i.e., moving straight ‘down’. 
 
But in arrays of higher order, adjacent columns (sequences) differ. Thus the indices λ–k,λ+k from 

k
jQ  in (1.18) will take a term from each sequence in turn. Although this diagonal motion seems, 

for λ > 1, a necessity, it turns out that if the second element in the b coefficient is given a different 
form, there is apparently a way to construct it from the first column alone. To show how this idea 
has developed so far, the terms connected by arrows in table 7 above are equated by the formula: 
 
 1

, ,( 1) ( 1)k k
k j k j k j jF c F cλ λ

λ λ
−

− + − +⋅ ⋅ − ⋅ ⋅ −=   

Thus for k ≥ 0, if this equivalence is correct, the coefficients of  (1.18) can also be stated as: 
 
 2

, , , ,( ( 1) ) ( 1)k k k
j j j k j k j j j j k jQ F x F F c x F cλ λ

λ λ λ λ+ − + += ⋅ − − ⋅ ⋅ − + ⋅ ⋅ −   

 
Problem(s): Provide a formal proof for any of the formulas/equations/identities stated above.  
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Addenda 
Recall the formula in (1.16) which, for y = an integer generates the ring of integers. This sequence 
converges to Fn+1/Fn = 1 in both directions. It would seem that no integer sequence could converge 
more slowly than …−5, −4, −3, −2, −1, 0, 1, 2, 3, 4, 5… But other sequences, found in arrays such 
as Φ4 [1, −2,3, −4][1] and Φ4 [−1,2, −3,4][1], do converge at the same rate. The discriminant D = 
0 (D0) seems likely be the key here. 
 
How many D0 arrays are there? An infinite number perhaps? What sort of patterns will emerge in 
β and γ  if all of the D0 arrays are themselves considered as a set? 
 
The empirical formula below gives, in test cases, coefficients for the equation with roots 2

jr ± : 
 

2 2 2 2 2 2 2
, 1, 1, 1 , 1( 2 ( 1) )j j j j j j j j jQ F x F F c x F cλ λ

λ λ λ λ+ − + += ⋅ − + − ⋅ − ⋅ + ⋅  
 
Should this be valid for all arrays, perhaps a pattern is incipient here, and an algorithm can be found 
to generate coefficients for k

jQ  when k is an ordinary exponent. 
 
A 3rd degree sequence, (c)Fn + (b)Fn+1 + (a)Fn+2 = Fn+3, converges to a root (or roots) of a cubic 
equation. Is there something analogous to the arrays Φλ for use in 3D? 
 
For all of the aesthetic expressions of the Fibonacci sequence and the golden mean that abound in 
geometry, art and nature, are expressions of any Φλ>1 sequences and/or ratios to be found in these 
realms? 
 
Using N = 1,2,3… ∞ as a coefficient of the sequence in (1.4), then Fn + (N)Fn+1 = OEIS A058307 
 
0, 1, 3, 13, 68, 421, 3015, 24541, 223884, 2263381, 25121075, 303716281, 3973432728… 
 
(N)Fn + (N)Fn+1 = A002467 
 
0, 1, 1, 4, 15, 76, 455, 3186, 25487, 229384, 2293839, 25232230, 302786759, 3936227868… 
 
(N)Fn + Fn+1 = A000932 
 
0, 1, 1, 3, 6, 18, 48, 156, 492, 1740, 6168, 23568, 91416, 374232, 1562640, 6801888… 
 
 
 
 
 
 
References: 
 
N.J.A. Sloane’s The Online Encyclopedia of Integer Sequences 
http://oeis.org/ 
 
Ron Knott’s Fibonacci Numbers and the Golden Section 
http://www.maths.surrey.ac.uk/hosted-sites/R.Knott/Fibonacci/ 
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Appendix 
A survey of the arrays that are the theme of this paper is not complete without mentioning continued 
fractions, as a close correlation exists between the two. In what follows, certain periodic continued 
fractions (θλ) can be seen as a φλ-sequence turned inside out. 
 
Recall that at the beginning of the paper, the formula 
 

1 2 0 1( ) ( ) ; 0, 1n n nc F b F F F F+ ++ = = =  
 
was the basis for a derivation of Q = 2 .x bx c− −  
 
By substitution, Q expands to an infinite, cyclical continued fraction of period length λ1. I.e., since 

2 0x bx c− − = , then 
c

x b
x

= + ; hence, continuous substitution of 
c

b
x

+  for x on the right-hand 

side yields the continued fraction 
c

x b
c

b c
b

b

= +
+

+
…

 

 
To restore this fraction to a quadratic form, let the iterative algorithm 
 

c b xx + →                                                             (2.1) 

 
represent its solution. Let I designate the number of iterations of (2.1). Then; 
 

lim ( ) ( )
I

c cb x b xx x→∞
+ → = + =  

 
and 2 0x bx c− − = . 
 
Thus for λ1 and b,c positive integers, both the infinite continued fraction and the ratio of adjacent 
terms of a φ1 series converge to the same number. 
 

For λ > 1, we said that in the limit as n → ∞, 1 1
1

n n

n n

F F
x

F F
λ

λ

+ + +

+

= = . By use of the procedures that were 

then devised, such fractions reduce to λ quadratics. So, for S1 and S2 in Φ2, we find 
 

2
1 1 1 1 2 1 2 1 2 1( ) 0Q b x b b c c x b c= − − + − =  

 
  2

2 2 2 1 2 1 2 2 1 2( ) 0Q b x b b c c x b c= − + − − =  
 

Now for λ > 1, θλ can be ‘factored’ into λ fractions of the form: 
 

1
j

j j
j

c
b xx ++ →                                                            (2.2) 
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Thus for λ2, (2.2) has two expressions; 1
1 2

1

c b xx + →  and 2
2 1

2

c b xx + →   

 

Then by substitution and taking limits: 2
1 2

1
1

1

c
x b

cb x

= +
+

; 1
2 1

2
2

2

c
x b

cb x

= +
+

 

 
Clearing fractions and collecting terms: 
 

2
1 1 1 1 2 1 2 1 2 1( ) 0Q b x b b c c x b c= − − + − =  

 
2

2 2 2 1 2 1 2 2 1 2( ) 0Q b x b b c c x b c= − + − − =  
 
These are the same equations as given by Φ2. Note that although an infinite periodic continued 
fraction θλ is usually thought of as converging to one solution, in this context θλ converges to λ 
solutions, and all are of equal interest. Henceforth, let Θλ represent the set of these solutions and 
the associated quadratic equations. Now we have seen so far that for 0 < λ ≤ 2, Θλ and Φλ converge 
to the same values. For λ > 2, a slight complication appears. To see why, take the φ3 formula 
 

2
1 1 2 2 1 1 2 3 1 3 2 1 3 2 1 2 3 1 1 3( ) ( ) ( ) 0Q b b c x b b b b c b c b c x b b c c c= + − + − + − + =  

 
Having derived this equation from S1 in Φ3 [b1, b2, b3][c1, c2, c3], we can expand it into a continued 
fraction θ3. First, arrange the terms of Q1 so that each is positive and then divide by x1 for 
 

2 3 1 1 3
1 2 2 1 2 1 1 2 3 1 3 3 2

1

( )
b b c c c

b b c x b c b b b b c b c
x
+

+ + = + + +  

 

Some rearranging and tweaking of these terms allows for division by 1
1

1

cb x+ : 

 
2 1 1 2 3 1 1 3

1 2 1 2 1 1 2 3 1 3 3 2
2 1 3 21 1 1

2 1 2 3 3
1 1 1

1 1 1
1 1 1

b c x b b c c c
b b x c x b b b b c b c

c x b cx x x
b x b b c

c c c
b b b

x x x

+ + = + + + +
= + = + +

+ + +

   
   
   
      
   
 
 

Dividing the last equation by 2
2

1
1

1

c
b

c
b

x

+
+

 yields 3
1 3

2
2

1
1

1

c
x b

c
b cb x

= +
+

+

 

 
This last equation in turn can be expanded indefinitely. The aforementioned complication is one of 
a notational nature, for it appears that Φ3 [b1, b2, b3][c1, c2, c3] is associated with the fraction set Θ3 
[b3, b2, b1][c3, c2, c1]. But since θλ is solved ‘upwards’, the notation could be adjusted to say that Φ3 
[b1, b2, b3][c1, c2, c3] ↔ Θ3 [b1, b2, b3][c1, c2, c3] 
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Hence, finding Q1 for any λ merely requires clearing 1
1

1
2

2

1
1

1

c
x b

c
b c

b

cb x

λ
λ

λ
λ

λ
λ

−
−

−
−

= +
+

+
+

+

…
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WORKSHEET 
For page 15 

 
 S1 S2 S3 S4 
     
 1247.375 2808.34375 724.71875 2703.8125 
F-4λ -731.71875 -1149.84375 -1045.3125 -1045.3125 
 299.59375 1658.5 404.125 613.1875 
 -432.125 -641.1875 -237.0625 -251.0625 
 167.0625 376.125 97.0625 362.125 
F-3λ -98 -154 -140 -140 
 40.125 222.125 54.125 82.125 
 -57.875 -85.875 -31.75 -33.625 
 22.375 50.375 13 48.5 
F-2λ -13.125 -20.625 -18.75 -18.75 
 5.375 29.75 7.25 11 
 -7.75 -11.5 -4.25 -4.5 
 3 6.75 1.75 6.5 
F-λ -1.75 -2.75 -2.5 -2.5 
 .75 4 1 1.5 
 -1 -1.5 -.5 -.5 
 .5 1 .5 1 
Φ4 [1,1,2,3][1,2] 0 0 0 0 
 1 1 1 1 
 1 1 2 3 
 3 3 8 4 
Fλ 7 11 10 10 
 27 14 26 24 
 34 36 62 92 
 88 86 238 116 
F2λ 210 330 300 300 
 806 416 776 716 
 1016 1076 1852 2748 
 2628 2568 7108 3464 
F3λ 6272 9856 8960 8960 
 24072 12424 23176 21384 
 30344 32136 55312 82072 
 78488 76696 212288 103456 
F4λ 187320 294360 267600 267600 
 718936 371056 692176 638656 
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