LLI AND EULER [6.42

) and then put x = 0, we amely,

n)

or h, we have, using 6.4 (2),

1/2(1-5),

ctorials analogous to the

shu-s.

x and h,

$$\mathbb{R}^{(n-8)}(x).$$

omes the derivate of $B_{\nu}^{(n)}(x)$,

 $(s-1)! B_{\nu-s}^{(n-s)}(x).$

$$(s-1)! B_{\nu-8}^{(n-s)}$$
.

f Bernoulli's Numbers.

$$t^{\nu} = \sum_{\nu=0}^{\infty} \frac{t^{\nu}}{\nu!} B_{\nu}^{(\nu+1)}(x).$$

x and we obtain

$$\frac{t^{\nu}}{(\nu-n)!}\,B_{\nu-n}^{(\nu+1)}(x).$$

6.43] THE POLYNOMIALS OF BERNOULLI AND EULER 135

Putting x = 1 and dividing by t^n , we have

(1)
$$\left[\frac{\log (1+t)}{t} \right]^n = \sum_{\nu=0}^{\infty} \frac{t^{\nu}}{\nu!} B_{\nu}^{(n+\nu+1)}(1)$$

$$=\sum_{\nu=0}^{\infty}\frac{t^{\nu}}{\nu!}\frac{n}{n+\nu}B_{\nu}^{(n+\nu)},$$

using 6.3 (4).

In particular, for n = 1,

(2)
$$\frac{\log(1+t)}{t} = \sum_{\nu=0}^{\infty} \frac{t^{\nu}}{(\nu+1)!} B_{\nu}^{(\nu+1)}.$$

Again, integrating $(1+t)^{x-1}$ with respect to x from x to x+1, n times in succession, we have from 6·11 (9),

$$\frac{(1+t)^{x-1}t^n}{[\log(1+t)]^n} = \sum_{\nu=0}^{\infty} \frac{t^{\nu}}{\nu!} B_{\nu}^{(\nu-n+1)}(x).$$

Putting x = 0, we have

(3)
$$\frac{t^n}{(1+t)[\log{(1+t)}]^n} = \sum_{\nu=0}^{\infty} \frac{t^{\nu}}{\nu!} R^{(\nu-n+1)}.$$

and in particular, for n = 1,

(4)
$$\frac{t}{(1+t)\log(1+t)} = \sum_{\nu=0}^{\infty} \frac{t^{\nu}}{\nu!} B_{\nu}^{(\nu)},$$

which is the generating function of the numbers $B_{\nu}^{(\nu)}$.

Again putting x = 1, we have

(5)
$$\left[\frac{t}{\log(1+t)}\right]^n = \sum_{\nu=0}^{\infty} \frac{t^{\nu}}{\nu!} B_{\nu}^{(\nu-n+1)}(1),$$

which shews that (1) also holds when n is negative.

In particular, for n=1,

(6)
$$\frac{t}{\log(1+t)} = \sum_{\nu=0}^{\infty} \frac{t^{\nu}}{\nu!} B_{\nu}^{(\nu)}(1),$$

which is the generating function of the numbers $B_{\nu}^{(\nu)}(1)$.

Using 6.3 (4), we have from (6),

$$\frac{t}{\log(1+t)} = 1 + \frac{1}{2}t - \sum_{\nu=2}^{\infty} \frac{t^{\nu}}{\nu!} \frac{B_{\nu}^{(\nu-1)}}{\nu-1}.$$

Blease enter

as

136 THE POLYNOMIALS OF BERNOULLI AND EULER [

We give a list of ten of the numbers $B_{\nu}^{(\nu)}$:

6.5. Bernoulli's Polynomials of the First Order. We shall write $B_{\nu}(x)$ instead of $B_{\nu}^{(1)}(x)$, the order unity being understood. Thus from 6.1 (2), we have

(1)
$$\frac{t e^{xt}}{e^t - 1} = \sum_{\nu=0}^{\infty} \frac{t^{\nu}}{\nu!} B_{\nu}(x),$$

as the generating function of the polynomials and

(2)
$$\frac{t}{e^t - 1} = \sum_{\nu=0}^{\infty} \frac{t^{\nu}}{\nu!} B_{\nu},$$

as the generating function of Bernoulli's numbers, B_{ν} , of the first order.

From 6.11, we have the following properties:

(3)
$$B_{\nu}(x) \doteq (B+x)^{\nu}.$$

(4)
$$(B+1)^{\nu} - B_{\nu} \doteq 0, \quad \nu = 2, 3, 4, \dots.$$

(5)
$$\frac{d}{dx}B_{\nu}(x) = \nu B_{\nu-1}(x).$$

(6)
$$\int_{a}^{x} B_{\nu}(t) dt = \frac{1}{\nu + 1} [B_{\nu+1}(x) - B_{\nu+1}(a)].$$

(7)
$$\Delta B_{\nu}(x) = \nu x^{\nu-1}.$$

(8)
$$B_{\nu}(1-x) = (-1)^{\nu} B_{\nu}(x)$$
, from 6.2.

The first seven polynomials are given in the following list.

$$B_0(x) = 1,$$

 $B_1(x) = x - \frac{1}{2},$
 $B_2(x) = x^2 - x + \frac{1}{6},$

6.5] THE POLYNOMIALS OF BERNOUL $B_3(x) = x(x-1)(x-\frac{1}{2}) = x^3 - \frac{3}{2}x^2 + B_4(x) = x^4 - 2x^3 + x^2 - \frac{1}{30},$ $B_5(x) = x(x-1)(x-\frac{1}{2})(x^2 - x - \frac{1}{3}) = B_2(x) = x^6 - 3x^5 + \frac{5}{12}x^4 - \frac{1}{3}x^2 + \frac{1}{12}x.$

We have also for the values of the first se

6.501. A Summation Problem. T We have by 6.5 (6) and (7),

$$\int_{s}^{s+1} B_{\nu}(x) dx = \frac{1}{\nu+1} [B_{\nu+1}(s+1) - s^{\nu}]$$

Thus

$$\sum_{s=1}^{n} s^{\nu} = \int_{0}^{n+1} B_{\nu}(x) \, dx = \frac{1}{\nu + 1} [B_{\nu + 1}]$$

For example, if v = 3,

$$\sum_{s=1}^{n} s^{3} = \frac{1}{4} [B_{4}(n+1) - B_{4}]$$

$$= \frac{1}{4} [(n+1)^{4} - 2(n+1)^{3} + (n+1)^{2}]$$

$$= [\frac{1}{2}n(n+1)]^{2}.$$

The method can clearly be applied if the sbe a polynomial in s.

6.51. Bernoulli's Numbers of the form 6.5 (2),

(1)
$$\frac{t}{2} + \sum_{\nu=0}^{\infty} \frac{t^{\nu}}{\nu!} B_{\nu} = \frac{t}{2} \cdot \frac{e^{t} + e^{t}}{e^{t} - e^{t}}$$

The function on the right is even, since the function unaltered. It follows to no odd powers of t, and hence

$$B_{2\mu+1} = 0, \quad \mu > 0,$$

 $B_1 = -\frac{1}{2}.$