ROTATABLE PARTITIONS

E. MJ/WRIGHTY

Lo In what Tollows, 4l small Iatin letters denote non-negative rational intcoers or
functions all of whose valucs are non-negalive integers, By a d-dimensional herestrictod
partition Y of n.where = 0. h - 0, we understand a solution of (he equation,

1= Z ) )'(.\‘I\ Ao, X,/)» (,)

T Nae g

where everv v < ) and
POV N ) > 2O ),

whenever x; < v/ for all /. We may take b = o when we shall call the partition -
restricted. The only other case ol importance is that in which 5 — I such a partition
we call a wnit pariition (morce correctly, a partition into units). We write ¢(d, h: n)
ior the number of /-dimensiona] b-restricted partitions of s, I0we sum with respect
tox, .y, we see that

qd+1, 1) = q(d, o ). (2)

2. We require the following lemma,

LEMMA. Let p be a prime number, d = p' and T be o transformation such that T¢
is the identity. 1f S is a finite set closed under T, then the number of members of S not
incariant under T is divisible b .

Corresponding to cvery member s ol S, we construct the set (), viz.

- 2 ~ —
S Ts, T, o, T s,

where e s the least positive integer such that T¢ = . Then ¢ < dilet us write d = e -r,
where 0< ¢ <. We have s = Tl = T(TYVs = T and so = 0. by the delinition
e, Henee ¢fd.

Clearly Z(s) < S. Again, il §" < £(s). then Z(s"y = X(s): henee any (wo sels
) and L(s,) either coincide or are disjoint. We have then all (he members of S
“rranged in disjoint sets X(sy), Z(sy), ... .

If s is mvari;mt'under T.then ¢ = 1. Forall other s we have ¢ > T and so. if  — s
7 Hence all the s not invariant under Ture arranged in disjoint sets and the number
Tmembers in cach of thesc sets is a multiple of p. Hence the total number of < nol
“anant under 7 s a multiple of p.

We now take the set S to be the set of d-dimensional b-restricted partitions Y of u,
14 T to be the transformation v’ — TY such that

Yvix,, L) = PV, v Xy, ).
The conditions of the lemma are clearly satisfied. Let us call any partition Y which is
‘Mariant under T, i.e., one for which

YOrn Yo, ) =0(vy, vy, vy, )
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the following theorem.
TueEOorREM. Ifd =p', then
a(d, by n) =q'(d. b.n) (mod p).

We observe that nothing like (2) is true for the ¢’

3. Tt las long been conjectured that the generating function for g(d. wom. i

0,=0(X)=1+ S gid, = i A"

n=1

1s equal to

R, = Ry(X\) = (1 (=xH ) = 1o m A

k=1

Ak =2 , . : _
where ( 3 takes the value 1 fork = 1 and otherwise denotes the usual binomial

coefficient. For d = 1. this conjecture s true and its almost intuitive proof is duc to

Euler [4]. Macmahon (5] proved the conjecture true for J = 2. but neither his proof

nor that of Chaundy [2] is at ail simple. Attempts Lo produce a direct (i.c.. combin-
torial) proof for d — 2 have net got very far. Cheema and Gordon [3] found ©

combinatorial proof that

=\~ "Il (I=XM* =1+ % g2 20 X

ho-2 nesl
but it is not trivial and its further extension looks difficult. Recently [1] the conjecture
has been dispraved for J = 3, essentially by showing that qld, =: 6) # r(d, 6). The

for all sets ¥y, Vo, -oos Ngo @ rotatable partition and let g (d. o) detieie B T s

d-dimensional b-restricted rotatable partitions of 7. Then our lemma gives us at oncee 1
l
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quthors of [1] do not give the details of the calculation (w hich they deseribe as mmoiy

tedious ). but its nature is clear. They have dso wsed a computer o calvuiate
) I

g(d, 1. m for Jd < Rand arange of #. |

The theorem of §2 enables me to cive Rdaery simple prool of the Falsehood of
the conjecture ford = p or d = p—1. This theorem might also provide a test for ans
other conjecture. When d is a prime power. the (heorem wlso provides a simple choed?
of the accuracy of computed values of (o, 1omy und gld, oz n) for fairly small vidue
of n.

[t is interesting to
and it would be of some interest to have a more
But the case of ¢(2, oc: n) shows that it is unlikely that

Jearn that Ry(X) is not the gencrating function of gl i
plausible conjecture as 1o what iz the
correct gencrating function.
uld help us greatly to prove what is the generating function,

any such conjecture wo
function has not cnabled us to e duwe

In that case, our knowledge of the generating
a simple proof or a direct. enumerative proof.
In [6] [ showed that the generating function for

( = 3 subject to
3(0.0.0) < a. v(1,0.0) < b, yO, 1,00 ¢ (b= ¢ <)

v, e, 0 =0 (utre )

the number of solutions of (1Y 1eT

and

is b ¢
z z 1(”? l‘):.)*u‘-r:.‘-—uir—r‘
w-9 =0
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Here «(u, 1) is a polynomial in } whcm. term of lowest degree in X is of degree
VWu—o)+3(u+0)—1. The oy, v) can i theory be calculated from (increasingly
elaborate) recurrence relations. In particular, «(u, 1) = 2(r, ) and

20,0)=1, 20, N ==2(1,00=—X, 20, )=0 (022,

I am investigating the next step. in which we allow x(1, 1, 0) to have positive values,
but the work is not simplc

4. The values of ¢'(d. 1; 1) for the smaller values of d and »n can be readily caleulated
by enumerating the rotat 1b ¢ unit partitions, This is particularly easy whend isaprime,
the most interesting case {rom our point ol view,

The values of ¢'(d, co;n) can be deduced from those for g'(d, 1.u') for
0 = 1,2, . n since a rotatable unbounded partition ol # can be dissected into suitable

unit partitions of n’, where n = Zn'.
The values are given in the tables, 1fp > 3 where pisaprime, we have

G D) =g (p lipED=10 ¢(p 1 2p+ 1) =p+ 1)
¢ liny=0 Q2 n pop+2Tn 2p A2 nS ).
q'(p. 1 3p e =10 =D+
Ao G (prim =] (= p).
Gporim =2 (pil=na2p)
G (pocci2p+ 1) =Lp+o
qg'(p. 7oy = p+T (2p+2 = 0= 3p).
q'(poerz 3pA1) = Lp D (p 4343
Table of g'(d, 1o i)
Jd 3 4 5 7 8 9 1l

NG
1 1 A N B I
20 00 0 0 0 0
30 0 0 0 0 0 0
4 1 0 0 0 0 0 0
s 0 1 0 00 0 0
6 00 1 00 0 0
7 21 0000 O
g 1 0 0 1 0O 0 0
9 0 2 0 0 1 0 0
o 20 00 0 1 0
1 123 0 00 0O
2 0 0 0 0 0 0 1
3 420010 0
4 3 0 0 0 0 0 O
1S 0 4 0 4 0 0 0O
1« S 1. 4 0 00 0



1/
o35 n)-‘q(c Libem {or Lwo cl

QT2 LTI
5. Here we compare #{d.m nd qd.
We takep an odd prime. Al congruenees ¢ are Lo 1 modulus P We write S S, (X))~ S
to denote that
o .
SX(X\«SZ(X\ =7 a, N" = s a, N
n= 0 n=a2pt 1
First let us fake d =1 From §4. W€ have
( ' | \ {\ (1<n < ph
( _’,l",'.ﬂ = 7.@")-] =
o T \2 (pL\\;u_p)
Hence
0,= '+ ')' glp. - mn ~ #X)"(H-A\"’"‘).
n—l .
Againy
p—\—k \ El 1)
\\ (1\ =1
and
Hence

and so

4558 of o

\\
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Nextletd = p—1. We remark that ¢(d, «o; 1) = g(p, 1; n) and that

L
(p, ;) = ’(;‘1:11:(
i T ) lo R<n<p, pr2<ng ),
<o that

0,=0, | ~1+X+xrH1

e P
We have
L4 . + 3
Ri=Ryoy = || (1=x%~ (357,
A=1
[1 1~ casily seen that

( ] k=0,

k-3
(p:~l ).:_-‘—I k=2,
' L 0 (k#1.2).

We have then
Ryo (N~ (L= X) T (1= X7 (L= X 1) =1 (X2 =
~THEX) (X (A7 T = i
~{TEX) (1 XPT = XPT2 4 X )
A E P G D AR
and so
rp=1.n)yFqlp—1, an) (= p4-3.2p).
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