£ UnvAr)  T73(1970f (=735

MATHEMATICS

SELF-COMPLEMENTARY AND SELF-CONVE RSE
ORIENTED GRAPHS

BY

M. R.ASRIDHARAN

(Communicated by Pror. N. G. pE BRUII~N at the meeting of May 30, 1970)

Abstract

De Bruws [1] applied his ‘gencralization of Pdlya's fundamental theorem to
provide an outline of a general method for enumerating self-complementary structures,
This was used by Rean [8] to carry out in detail the enumeration of self-complemen-
tary graphs and digraphs. Suitable modifications of the same scheme gave HARARY
and PALMER [4], [5] the basic clue for their enumeration of self-converse digraphs. In
this paper we extend these results to obtain the formula for the number of self-
complementary oriented graphs on n points and the generating function for self-
converse oriented graphs in terms of the number of lines.,

. SELF-COMPLEMENTARY ORIENTED GRAFPHS

The generating funetions for self-complementary graphs and digraphs
are respectively Zqo (0,2,0,2 .} and Zp, (0,2,0,2, ...) where @, is
the configuration group S,® for graphs and D, is the configuration
group 8,21 for digraphs. When we write analogously Zg (0,2, 0, 2, o)
for the generating function for self-complementary oriented graphs, Q,
being the configuration group as defined in [3], we come across a difficulty
which is deeper than a mere notational one. For example in [3] Harary
observes in one place (p. 221) that Q, is a permutation group of degree p
(p—1)/2 whereas in computing the contribution to oriented graphs certain
eyeles from some permutations are deleted and the resulting formula Z(Q,)
is not a proper cyele index in the usually accepted sense of the term.
Since we see no obvious way of overcoming this difficulty, instead of
deriving the generating function for self-complementary oriented graphs
by applying de Bruijn’s theorem [1] with Q, acting on X® and Ss on
{0, 1}, we start with Read’s result for self-complementary digraphs and
pick out the oriented graphs from these by eliminating all those permu-
tations of D, which give rise to non-oriented graphs.

The cycle index of D, was first obtained by Pélya and was described
by HArARY [2] in his famous expository article dealing with graphical
enumeration and is given as
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where (g, ) is the g.c.d and {g, r) is the Le.m. of ¢ and r and « has cycle
structure (141 27z 3% ...). The self-complementary digraphs on n points are
obtained from this by putting f, =0 or 2 according as » iz odd or even.
REaD [8] has shown that this leads to the conclusion that only permu-
tations of 8, with cycle structure (171 272 4/5 6/s 85 10710 ...) with j;=0
or 1 give non-zero contributions to the expression Zp, (0, 2,0, 2, ...).
We now make the modifications in this result so that we get self-
complementary oriented graphs. We observe that if a € 8, has a cycle
whose length is a multiple of four, the resulting self-complementary
digraph is not oriented. For example, if (1234) is a cyele of a, the corre-
sponding cyecles of the permutation g, of D, induced by ~ are

((1,2)(2,3)3.4)(4.1)), (13)(24)(3.1)(4.2),
((2,1)(3,2)(4,3)(1,4))

Since a self-complementary digraph should satisfy the condition f(d)=
=ff(g.d) where d e X2 and g is the cycle of length 2 on the symbols
0, 1, the presence of the middle cyele requires that either f(1,3)=/f(3,1) =1
or f(2,4)=f(4,2) = 1. In either case we get a non-oriented digraph. Thus,
only permutations of 8, with eycle strueture of the form

(171 272 676 10710 14714 ...)

give nonzero contribution to the generating function.

The main observation in computing the contribution from a typical
permutation of the above form is that the contribution gets halved from
the corresponding contribution for self-complementary digraphs. The
detailed contributions are given below with illustrations:

(i) A cycle of length v=4a+2 in a € 8§, gives rise to »—1 cycles of
length » in g, but the contribution from such a cycle to the expression,
in which the substitution f,=0 or 2 according as » 1s odd or even has to

—2
be made, comes out to be only vT + 1 cycles of length ».

Example. «=(123456) gives rise to fiva cycles of g,.
((1,2)(2,3)(3,4)(4,5)(5,6)(6,1)) ((2,1)(3,2)(4,3)(5,4)(6,5)(1,6))
((1,3)(2,4)(3,5)(4,6)(5,1)(6,2)) ((3,1)(4,2)(5,3)(6,4)(1,5)(2.6))

((1,4)(2,5)(3,6)(4,1)(5,2)(6,3))
The pairs of eycles in the first two rows may be called converse pairs.

If digraphs were permitted, each such pair will correspond to 4 possible
combinations obtained from

1(1,2)={; and f(2,1)={]

But to obtain an oriented graph the contributions f(1,2)=/(2,1)=1 and
f(1,2)=f(2,1)=0 have to be disallowed. The last cycle does not give rise
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to any such difficulty. Thus the contribution from this cycle to the cycle

2
The total contribution from individual eycles of length » will therefore be

j:(tr-vz)f‘lﬂl:',
r

(ii) A pair of distinct eycles of length » gives rise to 212 point pairs
(i,7) which arrange themselves into 2» cycles of length v each. These
being pairs of converse eycles, the contribution is f,". The total contri-
bution from such pairs is therefore f»%r=1"2,

index for self-complementary oriented graphs is fes where js= +1.

Example. (12) (34) gives rise to the following converse pairs.
(L3)(2.4) (BD(%2)); (L4)(2.3)) (4.1)(3,2))

(iii) Any two cycles of unequal lengths ¢=4a+2 and r=4b+2 give
rise to (g, r) pairs of converse cycles of length (¢, ) each and the total
contribution from such cyele pairs is fjr".

(iv) The ji (=0 or 1) trivial eycles do not give any individual contri-
bution and their contribution in pairs with other cycles can be obtained
by the formula in (iii).

Thus we have the following lemma:

Lemma 1. The generating function for self-complementary oriented
graphs is
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where N =12, 6,10, 14, ...} and N'=1{1, 2, 6,10, 14, ...}

Since every cyele in the formula of lemma 1 is of even length the result
of putting f, =0 or 2 according as v is odd or even leads to the following
theorem:

Theorem 1. The number of self-complementary oriented graphs is

Va=L1 3 20w
n!aes

where
(2) On(x)= 3 332+ 3 3 (g7)jojr
veN = q=r
EN’

The numbers of self-complementary oriented graphs with up to 10
points are given in the following table:

n 3 4 5} 6 7 8 9 10
.

8 12 88 176 2752 8784

Iy
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Since self-complementary oriented graphs must necessarily have
n(n—1)/2 lines and these must be tournaments, that is. complete oriented
graphs, it is not difficult to pick them out from digraphs. For example,
though there are 1670 digraphs on 5 points with 10 lines [2, p. 53] only
12 of them are oriented graphs [3, p. 224]. These can be easily drawn
systematically from the complete oriented graphs on 4 points with 6
lines (Graphs 45-48 in Harary et al. [6]) by adding an additional point
and 4 oriented lines. The eight self-complementary oriented graphs with
5 points and 10 lines are given below.

> r

Fig. 1. Self-complementary oriented graphs with five points.

Since every self-complementary oriented graph is a complete oriented
graph and the converse and complement of a complete oriented graph
are the same, the self-dual oriented graphs are the same as the self-
complementary oriented graphs. The enumeration obtained ahove there-
fore partially settles problem 6 in Harary's latest list of unsolved problems
[7, p. 30].

9 SELF-CONVERSE ORIENTED GRAPHS
The generating function for self-converse digraphs has been obtained
in [5] as
X ; 1
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where #(k)=1 if k/2 is odd and 0 otherwise.
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To select the oriented graphs from these, one has to delete those cycles
of g, 2 5,"% in which both the pairs of points (¢, j) and (j, i) occur. This
is 50 because in enumerating self-converse digraphs the restriction imposed
on fis f(d)=f(g.d) so that (i, j) and (j, ) will take the same weight 1
if they appear in the same cycle. Observing further that the action of
7. € Sa™52 on X121 induced by x € Sy is given by g, (i, j)= (xj, xi) we arrive
at the following conclusions.

(i) Odd cyeles of a give rise to inadmissible cycles of g..
Example. (12345) induces the following cycles in g,.

((1,2)(3,2)(3,4)(3,4)(5,1)(2,1)(2,3)(+.3)(4,5)(1,5))
((1,3)(4,2)(3.5)(1,4)(5,2)(3,1)(2,4)(5,3)(4,1)(2,5)).

These cycles are inadmissible because they contain the pairs (i, j) and
(7,7) in the same cycle.

(i) Any two odd cycles of x give rise to inadmissible cycles of g,.
Example. (1) (234) gives rise to the cycle
((1.2)(3,1)(1,4)(2.1)(1,3)(4,1)).

In general (i, j) and (j, i) oceur with a separation of ¢p, ¢> elements,
where p and ¢ are the lengths of the two odd eyeles. It can be verified
that this holds even when p-=g

(iii)  An even cycle of x, whose length is a multiple of four, gives rise
to one inadmissible cycle in g, while the other cycles form converse pairs,

Example. (1234) - ((1,2)(3.2)(3.4)(1,4)) ((2,1)(2,3)(4,3)(4,1))
((1,3)(+,2)(3.1)(2,4)).

(iv) Even eycles of x whose lengths are not multiples of 4 give rise
to admissible eyeles of g, which pair off into converse eycles.

Example. (123456) — ((1,2)(3.2)(3,4)(5,4)(5,8)(1,6))

= ( )
((2.1)(2,3)(4,3)(4,5)(6.5)(6,1))
((1,3)(4,2)(3,5)(6,4)(5,1)(2,6))
((3,1)(2,4)(5,3)(4,6)(1,5)(6.2))
((1,4)(5,2)(3,6)) ((4,1)(2,5)(6,3)).

(v) Cycle pairs of x whose lengths are unequal and are hoth even or
one even and one odd give rise to admissible cycles of g, which pair off
into converse ecycles,

If I" (x) denotes the expression corresponding to I (x) for self-converse
oriented graphs, the above considerations lead to the following calculations.
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(1) The contribution to I' (x) from individual even cycles is

keM LEN HE
where
M={4,8,12 ...}
and
N={2,610, ..}

(2) The contribution to I (x) from pairs of even eycles of same
length is
H akixig=1r,
ke MUN

Combining (1) and (2) we have the following lemma:
Lemma 2. The contribution to /” (1) from all even cyecles is

Ttk i —2)/2 g ntk)
IT af* aky
k even

where
[1Lif keN

)=\ oif ke M

(3) Pairs of cycles of x of unequal lengths give the contribution
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r and & not
both odd.
Hence we have
Lemma 3.
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both odd.

Finally we have the following theorem:

Theorem 2. The generating function for self-converse oriented
graphs is
, 1
(4) 0'y(x) =

w0 > I'(w, 1422, 14222, 1+ 223, ...)

X €S,
The generating functions for these graphs with upto 6 points have
been computed and are given below: -
0'n(x)
1+z
1+x+ a2+ 228
14+ 222+ 423 + 4ot + 423+ 228
14+ 2224523+ 9xd + 1425+ 1728+ 1827+ 1928 4 829 + Sx10
142+ 222 + 623 4 1324 4 2705 + 4528 + 7227 + 10428 + 12329
+ 136210 + 112211 4 104212 4 58213 + 32214 12215,

S oW W
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