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SEDLACEK'S CONJECTURE ON DISJOINT SOLUTIONS OF X+Y = Z

Richard K. Guy1

In memory of Leo Moser, friend, inspiration, and reason for coming to
Alberta.

We wish to partition the numbers from 1 to n into as many disjoint
triples as possible, each triple to satisfy the equation xty =z. It
is clear that we cannot achieve more than [n/3] triples, where brackets
denote "greatest integer not greater than'. Suppose that n = 3k and
that k triples can be found. Adding the k equations, we see that the
total on either side is 3k(3k+1), i.e. one half of the sum of the first
3k numbers. This is not an integer when n = 6 or 9, mod 12. Sedlé¥ek
conjectured [2] that in all other cases [n/3] triples could be found and
verified it for n < 24. We give a proof for all appropriate values of n.

The problem bears a number of similarities to the combinatorial
part of the Ringel-Youngs proof [1,3,4] of the Heawood conjecture. This
is not surprising since Youngs developed Gustin's method of using a
trivalent "current graph" to the edges of which were attached distinct
integers which satisfied Kirchhoff's first law, which is the equation
of the title. Some of the similarities are

(a) that the solution falls naturally into 12 cases, the residue
classes mod 12 to which » may belong; these tend to subdivide because
of further parity considerations,

(b) that although solutions exist which follow an infinite pattern

within the residue class, there are sometimes irregularities for small

lResearch supported by grant A-4011 of the National Research Council of
Canada.



C B

<

N B BN D s

Fa F

r l“l‘FJ-E!I Il N e

values of n.

(c) that the number of solutions increases exponentially with n,
and it is an open question and probably a difficult one: how many
solutions are there? (Compare the problem of finding the number of
non-isomorphic embeddings of the complete graph on n vertices in a
surface of appropriate genus, {(n-3)(n-4)/12}, where braces demnote
the post-office function, '"least integer not less than".)

(d) that we may use 'coil diagrams" of the kind used by Youngs;

specifically, if n = 3k+1,

x x+am+131

2m

2m¥1

the row of nodes represents the consecutive integers from x = 2mt+l to
ém+l, or from x = 2m+2 to 6m+4 according as the upper or lower signs
are taken. The integer 5m+l (resp. 5Sm+4) does not feature in a triple.
Each of the k = 2m(resp. 2m+l) triples is given by a pair of nodes
which are connected by a semicircle, and its diameter.

I1f n = 3k+2 we can omit the number 3k+2 and use the construction
just given. The remaining cases, n = 3k, where k = 0 or 1, mod 4, are
dealt with by means of explicit constructions, though we have only

been able to do this by subdivision into eight cases for n, mod 48.
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n = 12r. The 4r values of z are [10r+1,12r] U [6r+l,8r+1]~{7r+l1},
i.e., the integers from 10r+l through 12r, and from 6r+l through 8r+l,
omitting 7r+l.

Form the »r-1 triples (27, 6r-i, 6r+i), 1 < 7 < r-1,

the 2r-1 triples (27¢-1, 10r-i+1, 10r+i), 1 < ¢ < 2r-1
and the two triples (5r-1, 7r+l, 12r) and (2r, 6r, 8r).
There remain r triples to be formed with z€{7r} U [7r+2, 8r-1] U {8r+l}

and x,y€{2r+2, 2r+h4, 2r+6,...,4r-2} U [4r-1, 5r-2] U {5r}.

r = 25, n = 24s. TForm the g triples (4s+4i+2,10s-27-1,148+27+1),

1 <17 < s, and for

s = 2t, n = 48t, the triples (8t+2, 20t, 28t+2),

(8t+87, 20t-4i+2, 28t+4i+2), 1 < i < t-1 and
(8t+8i~4, 20t-4i, 28t+4i-4), 1 < i < t, or, for

s = 2t+1, n = 4L8t+24, the triples (8t+6, 20t+8, 28t+l4),

(8t+87, 20t-4i+14, 28t+4i+14), 1 < © < ¢ and

(8t+8i+6G, 20t-47+8, 28t+4i+12), 1 < 7 < t.

r = 2s+l, n = 24s+12. Form the s-1 triples (4s+47+10, 10s-2741, lb4s+2i+11)

1 ¢ 7 < g-1, together with the three (4s+4, 10s+3, 14s+7), (4s+8, 10s+1,14s+9)
and (4s+6, 10s+5, l4s+ll) or the three (4s+6, 10s+l, 145+7), (4s+4,10s+5,145+9)

and (4s+8, 10s+3, 1l4s+ll), and for

s = 2¢t, n = 48t+12, the triples (8¢+10, 20%, 28t+10),

(8t+8i+4, 20t-4i+6, 28t+47+10), 1 < © < t-1 and
(8t+87+8, 20t-47, 28t+4i48), 1 < 7 < t-1, or, for

s = 2t+l, n = 48t+36, the triples (8t+14, 20t+12, 28t+26) if t > O,

(8t+8i+12, 20t-4i+14, 28t+47+26), 1 < 7 < t-1 and

(8t+8i+8, 20t-4i+12, 28t+47420), 1 < © < t.
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n = 12r+3. The 4r+l values of z are [10r+4, 12r+3] U [6r+3,8r+4]~
{7r+4)}. Form the r triples (27,6r-i+2, 6r+i+2), 1 < 7 < r,
the 2r-1 triples (27-1, 10p-i+4, 10r+i+3), 1 < © < 2p-1
and the two triples (5r-1, 7rt4, 127+3) and (2r+2, 6r+2, 8rtd).
There remain r triples to be formed with z€[7r+3, 8r+3] —~ {7rt4} and

x,y € {2rt+4, 2r+6, 2r48,...,4r-2} U [4r-1, 5r+1] ~ {5r-1}.

r = 2g, n = 24s+3. Form the s-1 triples (4s+47+8, 10s-271-3, lbs+2:+5),

1< 7 ¢ s-1, together with the two triples (4g+6, 10s-3, lb4g+3) and

(4s+4, 10s+1, 1l4s+5), and for

s = 2t, n = 48t+3, the triples (8t+8, 20t-2, 28t+6),

(8t+8i+2, 20t-4i+4, 28t+4i46), 1 < 71 < t-1 and

IN

(8¢+81+6, 20t-4i-2, 28t+4i+4), 1 < 1 < t-1, or, for

8=2t+1, n = 48t+27, the triples (8t+12, 20¢+10, 28t+22) if ¢t > O,

(8t+81+10, 20t-47+12, 28t+4¢+22), 1 < 7 < t-1 and

(8t+87i+6, 20t-41+10, 28t+41+16), 1 < 7 < t.

y = 2s+l, n = 24g+15. Form the s-1 triples (4s+4i+4, 10s-27+7, lbst2i+11),

1 < 1 < s-1, and, for s even, the two triples (8s+3, 8s+7, 16s+10) and
(8s+5, 8s+6, 1l6s+ll), or, for s odd, the two triples (8s+3, 8s+5, 16s+8)

and (8s+4, 8s+7, 16s+11l) and, for

s = 2t, n = 48t+l5, (8t+8i+2, 20t-4i+4, 28t+4i4+6), 1 < 2 < t and

(8t+81-2, 20t-47+10, 28t+4i+8), 1 < 1 < Ty
or, for

g = 2t+l, n = 48t+39,

(8t+8i+2, 20t-4i+20, 28t+47+22), 1 < © = t+1
and (8t+87+6, 20t-4i+14, 28t+47420), 1 < 7 < ¢t
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It can be verified that these prescriptions can be followed for
all positive integer values of g, i.e., for r 2 2, n 2 24, provided
that the triple indicated is not included when s = 1 (¢ = 0), and
provided sets are taken to be empty when the appropriate index set {7}
is empty. Solutions for the missing cases r = 0 and 1 (n = 0,3,12 and 15)
are given below.

The numbers of solutions for the first few values of n are given in
the following table, the last row being the appropriate cumulative totals
of the preceding one, which gives the numbers of only those solutions in

which 7 occurs (as a value of z).
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The solutions for n = 0 and 3 are the empty set and the unique
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triple (1,2,3). The eight solutions for n = 12 are

24 6 g 15 6E 15 612 5 7‘ 3 4 7|16 7|2 6 8| 3 5 8
{ | {
1910 | 2810 37 10 |3 6 9/ 1 8 94 5 9 \4 5 912 79

3811 (4711 2911 (11011 |5 611 |3 811 (3 710 |4 610

3912 \ 4 8 12 \4 8 12 2 10 12 2 10 12 111 12 111 12

57 12

and the twenty-one solutions for n = 15 are
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310 13

112 13

2 10 12

113 14

6 9 15

11

10

10

12

13

11

12

13

14

15

11

13

14

15

10

12

14

15

10

11

11

12

11

8

13

12

13

14

15

10

13

14

15

10

12

14

15

10

12

12

11

11

13

11

13

14

15

10

13

14

15

10

12

14

15

10

12

12

11

10

14

11

13

14

15

10

13

14

15

11

12

13

15

2

5

12

10

10

13

10

8

11

13

14

15

11

12

14

15

11

12

13

1 14 15

2

6

12

10

13

10

10

7

11

13

14

15

11

12

14

15

11

12

13

114 15

R. B. Eggleton has suggested generalizing the problem to ax + by = cz

where (a,b,c) = 1.

solutions in the case x+y = 2z (which has the simple solution

He has obtained asymptotic bounds for the number of

(37-2, 3%, 3i-1), 1 < k < n, n = 3k) and we hope to publish a complete

solution elsewhere, at least in the case a
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