A 2848-Scan add to 250%

2848

THE UNIVERSITY OF CALGARY

Department of Mathematics, Statistics and Computing Science

SEDLÁČEK'S CONJECTURE ON DISJOINT SOLUTIONS OF X+Y=Z

bу

Richard K. Guy

Research Paper No. 129

June, 1971

SEDLAČEK'S CONJECTURE ON DISJOINT SOLUTIONS OF X+Y=Z

Richard K. Guy¹

In memory of Leo Moser, friend, inspiration, and reason for coming to Alberta.

We wish to partition the numbers from 1 to n into as many disjoint triples as possible, each triple to satisfy the equation x+y=z. It is clear that we cannot achieve more than $\lfloor n/3 \rfloor$ triples, where brackets denote "greatest integer not greater than". Suppose that n=3k and that k triples can be found. Adding the k equations, we see that the total on either side is $\frac{3}{4}k(3k+1)$, i.e. one half of the sum of the first 3k numbers. This is not an integer when $n\equiv 6$ or 9, mod 12. Sedláček conjectured $\lfloor 2 \rfloor$ that in all other cases $\lfloor n/3 \rfloor$ triples could be found and verified it for $n \le 24$. We give a proof for all appropriate values of n.

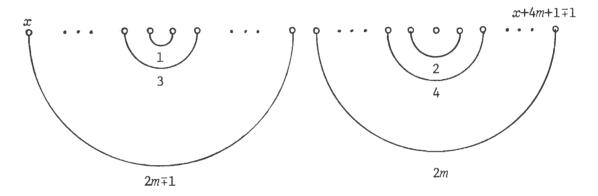
The problem bears a number of similarities to the combinatorial part of the Ringel-Youngs proof [1,3,4] of the Heawood conjecture. This is not surprising since Youngs developed Gustin's method of using a trivalent "current graph" to the edges of which were attached distinct integers which satisfied Kirchhoff's first law, which is the equation of the title. Some of the similarities are

- (a) that the solution falls naturally into 12 cases, the residue classes mod 12 to which n may belong; these tend to subdivide because of further parity considerations,
- (b) that although solutions exist which follow an infinite pattern within the residue class, there are sometimes irregularities for small

 $^{^{1}\}mathrm{Research}$ supported by grant A-4011 of the National Research Council of Canada.

values of n.

- (c) that the number of solutions increases exponentially with n, and it is an open question and probably a difficult one: how many solutions are there? (Compare the problem of finding the number of non-isomorphic embeddings of the complete graph on n vertices in a surface of appropriate genus, $\{(n-3)(n-4)/12\}$, where braces denote the post-office function, "least integer not less than".)
- (d) that we may use "coil diagrams" of the kind used by Youngs; specifically, if n = 3k+1,



the row of nodes represents the consecutive integers from x=2m+1 to 6m+1, or from x=2m+2 to 6m+4 according as the upper or lower signs are taken. The integer 5m+1 (resp. 5m+4) does not feature in a triple. Each of the k=2m(resp. 2m+1) triples is given by a pair of nodes which are connected by a semicircle, and its diameter.

If n=3k+2 we can omit the number 3k+2 and use the construction just given. The remaining cases, n=3k, where $k\equiv 0$ or 1, mod 4, are dealt with by means of explicit constructions, though we have only been able to do this by subdivision into eight cases for n, mod 48.

 $\underline{n=12r}$. The 4r values of z are $[10r+1,12r] \cup [6r+1,8r+1] \setminus \{7r+1\}$, i.e., the integers from 10r+1 through 12r, and from 6r+1 through 8r+1, omitting 7r+1.

Form the r-1 triples $(2i, 6r-i, 6r+i), 1 \le i \le r-1,$ the 2r-1 triples $(2i-1, 10r-i+1, 10r+i), 1 \le i \le 2r-1$ and the two triples (5r-1, 7r+1, 12r) and (2r, 6r, 8r). There remain r triples to be formed with $z \in \{7r\} \cup [7r+2, 8r-1] \cup \{8r+1\}$ and $x,y \in \{2r+2, 2r+4, 2r+6, \dots, 4r-2\} \cup [4r-1, 5r-2] \cup \{5r\}$.

 $\underline{r}=2s$, n=24s. Form the s triples (4s+4i+2,10s-2i-1,14s+2i+1), $1 \le i \le s$, and for

 $\underline{s} = 2t$, $\underline{n} = 48t$, the triples (8t+2, 20t, 28t+2), (8t+8i, 20t-4i+2, 28t+4i+2), $1 \le i \le t-1$ and (8t+8i-4, 20t-4i, 28t+4i-4), $1 \le i \le t$, or, for $\underline{s} = 2t+1$, $\underline{n} = 48t+24$, the triples (8t+6, 20t+8, 28t+14), (8t+8i, 20t-4i+14, 28t+4i+14), $1 \le i \le t$ and (8t+8i+4, 20t-4i+8, 28t+4i+12), $1 \le i \le t$.

r = 2s+1, n = 24s+12. Form the s-1 triples (4s+4i+10, 10s-2i+1, 14s+2i+11) $1 \le i \le s-1$, together with the three (4s+4, 10s+3, 14s+7), (4s+8, 10s+1, 14s+9) and (4s+6, 10s+5, 14s+11) or the three (4s+6, 10s+1, 14s+7), (4s+4, 10s+5, 14s+9) and (4s+8, 10s+3, 14s+11), and for

 $\underline{s} = 2t, \ n = 48t + 12$, the triples $(8t + 10, \ 20t, \ 28t + 10)$, $(8t + 8i + 4, \ 20t - 4i + 6, \ 28t + 4i + 10)$, $1 \le i \le t - 1$ and $(8t + 8i + 8, \ 20t - 4i, \ 28t + 4i + 8)$, $1 \le i \le t - 1$, or, for $\underline{s} = 2t + 1, \ n = 48t + 36$, the triples $(8t + 14, \ 20t + 12, \ 28t + 26)$ if t > 0, $(8t + 8i + 12, \ 20t - 4i + 14, \ 28t + 4i + 26)$, $1 \le i \le t - 1$ and $(8t + 8i + 8, \ 20t - 4i + 12, \ 28t + 4i + 20)$, $1 \le i \le t$.

 $\underline{n} = 12r+3$. The 4r+1 values of z are $[10r+4, 12r+3] \cup [6r+3,8r+4] \sim \{7r+4\}$. Form the r triples $(2i,6r-i+2, 6r+i+2), 1 \le i \le r$,

the 2r-1 triples $(2i-1, 10r-i+4, 10r+i+3), 1 \le i \le 2r-1$ and the two triples (5r-1, 7r+4, 12r+3) and (2r+2, 6r+2, 8r+4).

There remain r triples to be formed with $z \in [7r+3, 8r+3] - \{7r+4\}$ and $x,y \in \{2r+4, 2r+6, 2r+8, \dots, 4r-2\} \cup [4r-1, 5r+1] - \{5r-1\}$.

 $\underline{r} = 2s$, n = 24s+3. Form the s-1 triples (4s+4i+8, 10s-2i-3, 14s+2i+5), $1 \le i \le s-1$, together with the two triples (4s+6, 10s-3, 14s+3) and (4s+4, 10s+1, 14s+5), and for

 $\underline{s} = 2t, \ n = 48t+3$, the triples $(8t+8, \ 20t-2, \ 28t+6)$, $(8t+8i+2, \ 20t-4i+4, \ 28t+4i+6)$, $1 \le i \le t-1$ and $(8t+8i+6, \ 20t-4i-2, \ 28t+4i+4)$, $1 \le i \le t-1$, or, for $\underline{s} = 2t+1$, $\underline{n} = 48t+27$, the triples $(8t+12, \ 20t+10, \ 28t+22)$ if t > 0, $(8t+8i+10, \ 20t-4i+12, \ 28t+4i+22)$, $1 \le i \le t-1$ and $(8t+8i+6, \ 20t-4i+10, \ 28t+4i+16)$, $1 \le i \le t$.

r = 2s+1, n = 24s+15. Form the s-1 triples (4s+4i+4, 10s-2i+7, 14s+2i+11), $1 \le i \le s-1$, and, for s even, the two triples (8s+3, 8s+7, 16s+10) and (8s+5, 8s+6, 16s+11), or, for s odd, the two triples (8s+3, 8s+5, 16s+8) and (8s+4, 8s+7, 16s+11) and, for

 $\underline{s} = 2t$, n = 48t+15, (8t+8i+2, 20t-4i+4, 28t+4i+6), $1 \le i \le t$ and (8t+8i-2, 20t-4i+10, 28t+4i+8), $1 \le i \le t$,

or, for

s = 2t+1, n = 48t+39,

 $(8t+8i+2, 20t-4i+20, 28t+4i+22), 1 \le i \le t+1$

 $(8t+8i+6, 20t-4i+14, 28t+4i+20), 1 \le i \le t.$

and

It can be verified that these prescriptions can be followed for all positive integer values of s, i.e., for $r \ge 2$, $n \ge 24$, provided that the triple indicated is not included when s = 1 (t = 0), and provided sets are taken to be empty when the appropriate index set $\{i\}$ is empty. Solutions for the missing cases r = 0 and 1 (n = 0,3,12 and 15) are given below.

The numbers of solutions for the first few values of n are given in the following table, the last row being the appropriate cumulative totals of the preceding one, which gives the numbers of only those solutions in which n occurs (as a value of z).

n	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
_	9 0	0	0	1	1	2	2	3	7	15	12	30	8	32	162	21
	70	0	0	1	2	4	6	3	10	25	12	42	8	40	202	21

2848

2849

The solutions for n=0 and 3 are the empty set and the unique triple (1,2,3). The eight solutions for n=12 are

2 4 6	1 5 6 1 5 6	2 5 7	3 4 7	1 6 7	2 6 8	3 5 8
1 9 10	2 8 10 3 7 10	3 6 9	1 8 9	4 5 9	4 5 9	2 7 9
3 8 11	4 7 11 2 9 11	1 10 11	5 6 11	3 8 11	3 7 10	4 6 10
5 7 12	3 9 12 4 8 12	4 8 12	2 10 12	2 10 12	1 11 12	1 11 12
		ı	•	1		,

and the twenty-one solutions for n = 15 are

2	4	6	1	5	6	1	5	6	1	6	7	2	5	7	1	6	7	3	4	7
1	11	12	3	9	12	2	10	12	2	. 9	11	1	10	11	3	8	11	2	9	11
3	10	13	2	11	13	4	9	13	5	8	13	4	9	13	4	9	13	1	12	13
5	9	14	4	10	14	3	11	14	4	10	14	6	8	14	2	12	14	6	8	14
7	8	15	7	8	15	7	8	15	3	12	15	3	12	15	5	10	15	5	10	15
2	5	7	3	4	7	1	7	8	2	6	8	3	5	8	1	7	8	2	6	8
3	8	11	1	10	11	4	6	10	3	7	10	1	9	10	5	6	11	4	7	11
1	12	13	5	8	13	2	11	13	1	12	13	6	7	13	3	9	12	3	9	12
4	10	14	2	12	14	5	9	14	5	9	14	2	12	14	4	10	14	1	13	14
6	9	15	6	9	15	3	12	15	4	11	15	4	11	15	2	13	15	5	10	15
3	5	8	3	6	9	4	5	9	1	8	9	2	7	9	3	6	9	4	5	9
4	7	11	2	8	10	3	7	10	4	6	10	5	6	11	4	7	11	3	8	11
2	10	12	5	7	12	1	11	12	5	7	12	4	8	12	2	10	12	2	10	12
1	13	14	1	. 13	14	6	8	14	3	11	14	3	10	13	5	8	13	6	7	13
6	9	15	4	11	15	2	13	15	2	13	15	1	14	15	1	14	15	1	14	15

R. B. Eggleton has suggested generalizing the problem to ax + by = cz where (a,b,c)=1. He has obtained asymptotic bounds for the number of solutions in the case x+y=2z (which has the simple solution $(3i-2, 3i, 3i-1), 1 \le k \le n, n=3k)$ and we hope to publish a complete solution elsewhere, at least in the case a=b.

REFERENCES

- Ringel, G. and Youngs, J.W.T., Solution of the Heawood map-coloring problem case 11, J. Combinatorial Theory, 7(1969), 71-93; case 2, ibid., 342-352; case 8, ibid., 353-363.
- Sedláček, J., On a set system, Internat. Conf. on Combinatorial Mathematics., Ann. N.Y. Acad. Sci., 175(1970), 329-330.
- 3. Terry, C. M., Welch, L. R. and Youngs, J.W.T., The genus of K_{128} , J. Combinatorial Theory, 2(1967), 43-60; Solution of the Heawood map-coloring problem, case 4, ibid., 8(1970), 170-174.
- 4. Youngs, J.W.T., Solution of the Heawood map-coloring problem, cases 3,5,6 and 9, J. Combinatorial Theory, 8(1970), 175-219; cases 1,7 and 10, ibid., 220-231.