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and [x] denotes the greatest integer <x.
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Problem 75-2, The Regiment Problem Revisited, by G. J. SIMMONS (Sandia
Laboratories).

Is it possible to form a marching column of two’s with n — 1 members from
each of n regiments in such a way that every regiment is paired with every other
regiment and no two members of the same regiment have fewer than the obvious
maximum-minimum of [(n — 3)/2] ranks separating them?
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Problem 75-3, A Power Series Expansion, by U. G. HAussMANN (University of
British Columbia).

Last year, a former engineering student of ours wrote to the mathematics
department concerning a problem encountered in the electrical design for the
appurtenant structures of the Mica Dam on the Columbia River in British
Columbia. These structures include a spillway, low level outlets, intermediate
level outlets, auxiliary service buildings and a power intake structure.

The engineers obtained a function

(1) f(u) = [exp (u + nu) + exp (—nu))/[1 + expu],
where
() coshu =1+ x/2

and where x is a ratio of resistances. Moreover, they suspected that if y = f[u(x)],
then

" n+k
3 (x) = ( )x".
) y k;) ok
Show that (3) is valid.

Problem 75-4*, A Combinatorial Identity, by P. BARRUCAND (Université Paris
VI, France). o

Let
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where i, j, k are integers = 0, and let

m=0
so that A(n) is the sum of the squares of the trinomial coefficients of rank n and

B(n) is the sum of the cubes of binomial coefficients of rank n (A(n) = 1,3,15,93,
639, -, B(n) = 1,2,10, 56, 346, - - - )o

Prove that
X A7
An) = Y L B(m).
m=0
Editorial note. Equivalently, one has to prove that A 2% 73
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For other properties, e.g., recurrences, integral representations, etc., the
proposer refers to his papers in Comptes Rendus Acad. Sci. Paris, 258 (1964),

pp. 5318-5320 and 260 (1965), pp. 5439-5541. He also notes that his solution is a
tedious indirect one. [M.S.K.]
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