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For basic notation we follow Harary [3]. A digraph is
acyclic just if it contains no directed cycle of length >1. We
will be concerned only with digraphs on a finite number of points,

and the empty digraph. Contrary to [3] we say that a point is

a source of a digraph juét if it has iﬁ—degree 0. Any point

of a digraph which is not a source is called a non-source. A

digraph d' 1is said to be an extension of d Jjust if d is

the subgraph of d' which is induced by the non;sources of 4
(., A labeling of a digraph is a linear ordering of the points. A

subgraph of a labeled digraph 1s labeled by the inherited order-

ing. Thus we can use the notion of extension for labeled graphs

as well as unlabeled.

If is easy to see that every non-empty acyclic digraph has
at least éne source. Also, any digraph is acyelic just if it is
an extension of an acyclic digraph. These facts lead to enumera-

tions of acyeclic digraphs, labeled and unlabeled.

§1. Labeled acyclic digraphs. Let: 2y x be the number of non-
2

isomorphic labeled acyclic digraphs with exactly J sources and

k non-sources. It will be conveniant to frame our results in

terms of the generating function



Let d be a labeled digraph with exactly J sources and

k non-sources, and consider how d may be extended to a labeled

. ; . i+j+k ‘
digraph with exactly 1 sources. There are H ways that
the new sources can be ordered among the points of d . The 1
new sources are incident only to arcs which are directed to
points in d . Each source of d must be incident to at least
one of these new arcs. Thus for the extension there are 2t-1

ways of drawing new arcs to each source of d , and 2t ways of

drawing new arcs to each non-source of d . These pdssibilities

_ , _ . .. ety
are independent, so that in all there are (21—1)]21k (l 1 k)
non-isomorphic extensions of d with 1 sources.

Now for all 1,j,k 1let

. . i . . -+.+ . .+
xl""xjyk = (2 —1)32lk (l ]1 k) le] K R

and extend * to be bilinear on generating functions. Then our

argument shows that

[oe]

alx,y) = 1+ % Xl*a(x,y) R

i=1

since an acyclic digraph is either empty or else a proper ex-
tension of another acyclic digraph. By solving this relation
recursively, terms of a(x,y) of successively higher order are

found. The first few terms are
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al(x,y) = 1 + x + x2 + 2xy + %3+ 9x y o+ ley

3 2 2

y + 198x°y 3

+ xl+ + 28x% + 3lbxy~ + x5

+ 75x%y + 1,810x3y% + 10,710x°y°
L
+ 16,885xy  +
In Figure 1 are pictured the two non-isomorphic acyclic

digraphs with 2 sources and 1 non—source;

(o) | (b)
F?gure 1

There are 6 non-isomorphic labeled versions of 1(a) and 3 non-
isomorphic labeled versions of 1(b), which correspond to the term

9x2y from a(x,y).

§2. Unlabeled acyclic digraphs. The generating function approach
of §1 does not lend itself to enumerating unlabeled acyélic di-
graphs. To illustrate the difficulty, consider the two digraphs
of Figure l.. Any labeled version of either graph has 360 non-
1somorph1c extensions to labeled digraphs with 2 sources How—
ever, 1(a) has 5 non=- isomorphic extensions to unlabeled digraphs
with two sources, pictured in the top row of Figure 2, while 1(b)

has only 4 such extensions, pictured in the Dbottom row of Figure 2.



The difficulty arises from a symmetry of 1(b) which 1(a) does not

exhibit.
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‘;’ The necessary information on symmetry is carried by the
cycle index of the automorphism group of a digraph. Now, instead
of dealing in two variable generating functions we will consider

generating functions in infinitely many variables aj bl’ a,,

b2, ces If G is a permutation group and L and M are
unions of orbits of G , then the cycle index ZL M(G) of G
, oL
“over L,M is the polynomial
l . -
2y = = > [] e iputei)
L,M |G| . 1 1
.1
g6
where |G| 1is the order of G, A(g,i) 1is the number of cycles in

the disjoint cycle decomposition of g which have length 1 and
&. lie in L , and u(g,i) 1is the number of similar cycles in M

We write Z(G) for the épecial case of (G) where L 1is

y/
L,¢



is the object set of G . For any natural number n we denote

the symmetric group on 1,2,...,n Dby Sn . It is well known

01

ay
i i o.!
i

where the sum is over all sequences (01,02,...,0n) of non-

.

(see [2] or [4]) that

n

negative integers such that E iOi = n

i=1

If d is any digraph then aut(d) denotes the automorphism

group of d , and Z (aut(d)) denotes the cycle index of

3,N
aut(d) .over the sources and non-sources of d . If we let d’
( range over extensions of d which have n sources so as to in-

clude just one from each isomorphism class, then

1 .1 Ap,id), A(g,1i)+ulq,1)
E:ZS,N(‘E“”:(d ) ATauE(@] E.#(P’q)ﬂ =1 bj

1

(1)
The second sum is over all D € Sn and all q € aut(d) . The

factor #(p,q) is the number of extensions of d to a digraph

with sources 1,2,...,n which contain the permutation (p,q) in
their automorphism groups. Fact (1) 1s essentially a variation
on 'Burnside's lemma. It can be proved in much the same way as

Redfield's decomposition theorem [4, p. L45], or it can be viewed

as an application of a more general theorem of the author [7,

C.’ equation (2)1.



Now #(p,q) may be calculated explicitly. In order for an
extension of d to be fixed by (p,q) for p € S, and gq € aut(d)
it is necessary and sufficient that all the new arcs be permuted
amoﬁg themselves by (p,q) . The 1] possible arcs from the
points of a cycle of length 1 induced by p to the points of
a cycle of length j induced by ¢q fall into g.c.d.(i,3) cycles
each of length 1l.c.m.(i,j) in the disjoint cycle decomposition
of (p,g) viewed as a permutation on arcs. Thus there are

2g.c.d(1,j) ways of drawing these new arcs so as to be invariant

under (p,q). TFor a cycle of length j 1induced by g among

fg.c.d.(i,j)x(p,1)
the non-sources of d , there are a total of 2%

ways of drawing new arcs to this cycle which are invariant under
(p,q) . If the cycle of length ] 1is induced among the sources
of d by q then we must subtract 1 because at least one new

arc must be drawn to every source of d in an extension of d. Thus

Zg.c.d.(i,j))\(p,i) A (q,3) Zg.e.d.(i,jmp,i)ucq,p
#(p,q):[ﬂ(cll ‘l) ]li,j
J
(2)
To deal entirely with cycle indices let A = EiZS N(aut(d))
. 2 N
(one d from each isomorphism class of acyclic digraphs). TFor
any sequences {pi}’{oi}’{Ti} let
jig.c.d.(l,])pi 10'
o 01 T= ‘T_( 1 - —)]
(Hai)@,(ﬂaqbq) - ] L | |

373 1
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and extend ©® to be bilinear. Then statements (1) and (2) may
be combined into

ZS N(aut(d')) = Z(Sn) ® ZS N(aut(d))

bl >

where the sum is over representatives of all the isomorphism
classes of extensions of d which have n sources. Summing
this over all n and one d from each isomorphism class of

acyclic digraphs we have .

A = 1+ j%;zcsn) ® A . (3)

n=1

This is justified by the fact that every acyclic digraph which is

non-empty is a proper extension of some other acyclic digraph.
Relation (3) may be solved in a recursive fashion for terms

of A of successively higher order. For the first few terms it

is found that

) 1 13 1
A = 1 +a *gay tza, tab) +gay) fgaa,
3 9 5 2
t Fa, ¥ zajby *+ za by * ga by + Fab, #

In Figure 3 are pictured the 6 non-isomorphic digraphs on 3 points.

. ' ‘ 3
The first digraph of Figure 3 accounts for the terms ;a +£a a,+za
671 27172 373
3.2 1 ..
the next two account for the terms 7a1b1+7a2bl , and the remaining

5 2 1
thrge account for §alb1 + —2—alb2
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We denote by A[ai - %7 b, > y=] the result of substituting

5 .
X for each occurrence of as and yl for each occurrence of

b, for all i =1 . Then A[ai.+ xT3 b.

e yT1 is the counting

function for acyclic digraphs in terms of the humber of sources
and the number éf non—soufces. This is because as always
represents 1 sources of a digraph and bi represents 1 non-
sources, and because the sum of the coefficients of the éycle

index of any group is 1 . To terms of order 6,

A[ai +~ x73 b. - yl] = 1+ x + %% 4 Xy + x>+ 2x2y + 3xy2

2

vt oroaxdy ¢ 11x2y? 4+ 1exy®

+ XS + uxuy + 25X3y2 + 108x2y3

+ 164xyu + x6 + 5x5y + 47qu2

2 5

+ y20x3y3 4 2,168x%y" + 3,3ulxy” +

0f course A[ai,bi + x*¥] is the counting function for acyclic



digraphs in terms of just the total number of points, which to

order 6 is ' HBOX?—*
6

Ala;,b; » x'] = T4yt 2x246x°+31x 1 4302x°45,984x° + ...

§3.  Additional results. Standard methods apply to enumerating

connected acyclic digraphs given the éolution for all digraphs.
Also étandard is the infroduction of the total number of arcs as
an additional enumeration parameter. The relévant methods are at
least implicit in [1] for the labeled problems and [2] for the un-
labeled problems. Also, self-converse acyclic digraphs can be
enumerated by an extension of the methods of §2.

On the other hand the enumeration of transitive digraphs
seems immune to the techniques of this paper and remains, to the

best of the author's knowledge, unsolved.
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