A3139 A3140

PAMS 16 4 1965

→3139 3140

s(i) = 1, s(2) = 1 {2}, s(3) = 1 {2,3}, s(4) = 1 {3,4} s(5) = 2 {2 35} { 3 45}

THE NUMBER OF COPRIME CHAINS WITH LARGEST MEMBER n

R. C. ENTRINGER

1. In a previous paper [1] a coprime chain was defined to be an increasing sequence $\{a_1, \dots, a_k\}$ of integers greater than 1 which contains exactly one multiple of each prime equal to or less than a_k .

We let s(n), n > 1, denote the number of coprime chains with largest member n. For convenience we define s(1) = 1.

In this paper we will obtain a partial recursion formula for s(n) and an asymptotic formula for $\log s(n)$. A table of values of s(n), $n \le 113$, is also provided.

In the following p will designate a prime and p_i will designate the *i*th prime.

- 2. Lemma 1. $A = \{a_1, \dots, a_k = p_i \neq 2\}$ is a coprime chain iff
- (i) $A' = \{a_1, \dots, a_{k-1}\}$ is a coprime chain,
- (ii) p_{i-1} is the largest prime in A'.

PROOF. If $A = \{a_1, \dots, a_k = p_i \neq 2\}$ is a coprime chain, then

- (ii) p_{i-1} is in A (and therefore is the largest prime in A') since by Bertrand's Postulate $2p_{i-1} > p_i$, and
- (i) If A' is not a coprime chain, then there is a prime $p \le a_{k-1}$ dividing no member of A'. Thus p divides (and therefore is equal to) a_k since A is a coprime chain, but this is impossible since $a_{k-1} < a_k$.

To prove the converse we note that if A is not a coprime chain, then p_i divides some member of A' and therefore $p_{i-1} < a_{k-1}/2$. But again by Bertrand's Postulate there is a prime between $a_{k-1}/2$ and a_k occurring in A' which contradicts (ii).

A direct result of this lemma is:

Theorem 2. $s(p_i) = \sum_{n=p_{i-1}}^{p_i-1} s(n), i \ge 2.$

Theorem 3. $s(p) = \sum_{n < p} s(n)$ (n not prime).

PROOF. The assertion holds for p=2. Now let q and p be successive primes with q < p. If $s(q) = \sum_{n < q} s(n)$ (n not prime), then

$$s(p) = s(q) + \sum_{q < n < p} s(n) = \sum_{n < p} s(n)$$
 (n not prime)

Received by the editors April 27, 1964.

then we have a contradiction, while yA = (0) implies (A being simple) that y = 0, which also is a contradiction. Thus we have shown $[U, U] \subset Z$.

This result indeed generalizes the work of [1] and [4].

THEOREM 4. If A is simple (then $[A, A]^- = A$) and U is a proper Lie ideal of [A, A], then U is contained in the center of A except where A is of characteristic 2 and 4-dimensional over Z, a field of characteristic 2.

PROOF. Define $[U, U] = U^{(1)}$ and $U^{(n+1)} = [U^{(n)}, U^{(n)}]$ for all $n \ge 1$. Then, since A is simple, it has no nonzero nilpotent ideals. Thus, except in characteristic 2, $[U, U] \subset Z$ or $U^- = A$. If the former, then Theorems 7 and 9 of [4], in the case not characteristic 3, and Lemma 3 of [1] in this case implies $U \subset Z$. Now, by these same results, if $U^{(2)} \subset Z$, then $U \subset Z$. Hence $\{U^{(2)}\}^- = A$. Thus, by Lemma 9 of [2] we have $[U^{(2)}, A] = [A, A]$, which contradicts U being proper. Lemma 1 of [1] yields the result when A is of characteristic 2.

The author wishes to express his thanks to the referee, I. N. Her-

stein, for his suggestions.

REFERENCES

1. W. E. Baxter, Lie simplicity of a special class of associative rings, Proc. Amer. Math. Soc. 7 (1956), 855-863.

2. ____, Lie simplicity of a special class of associative rings. II, Trans. Amer.

Math. Soc. 87 (1958), 63-75.

- 3. I. N. Herstein, On the Lie and Jordan rings of a simple associative ring, Amer. J. Math. 77 (1955), 279-285.
- 4. ——, The Lie ring of a simple associative ring, Duke Math. J. 22 (1955), 471-476.

5. ——, Topics in ring theory, Univ. of Chicago, Chicago, Ill., 1965.

6. I. I. Zuev, Lie ideals of an associative ring, Uspehi Mat. Nauk 18 (1963), no. 1 (109), 155-158.

University of Delaware

by Theorem 2 and the theorem follows by induction.

3. The above result indicates marked irregularities in s(n), however, we can approximate $\log s(n)$ asymptotically.

THEOREM 4. $\log s(n) \sim \sqrt{n}$.

PROOF. Every coprime chain A(n) can be constructed in the following manner. Let q_i , $i=1,\cdots,k$, $q_i>q_j$ for i< j be those primes less than \sqrt{n} and not dividing n. Choose any multiple m_1q_1 of q_1 so that $m_1q_1 \le n$ and $(m_1, n) = 1$. If $q_2 \mid m_1$ let $m_2 = 0$. If $q_2 \nmid m_1$, choose any multiple m_2q_2 of q_2 so that $m_2q_2 \le n$ and $(m_2, nm_1q_1) = 1$. This process is continued by choosing $m_i = 0$ if $q_i \mid m_j$ for some $j = 1, \cdots, i-1$, otherwise choosing any multiple m_iq_i of q_i so that $m_iq_i \le n$, $(m_i, nm_1q_1 \cdots m_{i-1}q_{i-1}) = 1$. The set $\{m_1q_1, \cdots, m_kq_k\} - \{0\}$ can then be extended to a coprime chain by appending n and those primes p between \sqrt{n} and n which do not divide n or any m_i , and reordering if necessary. This extension is unique since any multiple of a prime p, other than p itself, must either be larger than n, not relatively prime to n, or not relatively prime to all m_iq_i . Therefore

$$\log s(n) \leq \log_{p \leq \sqrt{n}} \left[\frac{n}{p} \right] \leq \sum_{p \leq \sqrt{n}} \log n - \sum_{p \leq \sqrt{n}} \log p = \left\{ 1 + o(1) \right\} \sqrt{n}.$$

To obtain a lower bound for $\log s(n)$, coprime chains are constructed by choosing the m_i in the following manner. Let m_1 be 1 or any prime satisfying $\sqrt{n} < m_1 \le n/q_1$, $m_1 \nmid n$. There are at least $\pi(n/q_1) - \pi(\sqrt{n}) - 1$ choices for m_1 since there is at most one prime in the given range which divides n. Let m_2 be 1 or any prime satisfying $\sqrt{n} < m_2 \le n/q_2$, $m_2 \mid nm_1$. There are at least $\pi(n/q_2) - \pi(\sqrt{n}) - 2$ choices for m_2 . This process is continued until all multiples $m_i q_i$ have been chosen. In general there are at least

$$\pi\left(\frac{n}{q_i}\right) - \pi(\sqrt{n}) - i \ge \pi\left(\frac{n}{q_i}\right) - \pi(\sqrt{n}) - \left\{\pi(\sqrt{n}) - \pi(q_i)\right\}$$
$$= \pi\left(\frac{n}{q_i}\right) - 2\pi(\sqrt{n}) + \pi(q_i)$$

choices for m_i . The set $\{m_1q_1, \dots, m_kq_k\}$ is then extended to a coprime chain as previously indicated. If $\pi(n/q_i) - 2\pi(\sqrt{n}) + \pi(q_i) \leq 0$, then m_i is chosen to be 1; hence the above construction is valid.

In the remainder of the proof we assume ϵ given such that $0 < \epsilon < 1/2$. Define δ by $n^{\delta}/\delta = 2(1-\epsilon)\sqrt{n}$, $1/\log n < \delta < 1/2$. Then using certain results from [2] we have

$$\log s(n) \ge \sum_{p \le n^{\delta}; p \ne n} \log \left\{ \pi \left(\frac{n}{p} \right) - 2\pi(\sqrt{n}) + \pi(p) \right\}$$

$$\ge \sum_{17 \le p \le n^{\delta}} \log \left\{ \frac{n}{p} - \frac{4\sqrt{n}}{\log n - 3} + \frac{p}{\log p} \right\} - \sum_{p \mid n} \log 2n$$

$$= \sum_{p \le n^{\delta}} \log \frac{n}{p}$$

$$+ \sum_{p \le n^{\delta}} \log \left\{ 1 - \left(\frac{4\sqrt{n}}{\log n - 3} - \frac{p}{\log p} \right) \frac{p}{n} \log \frac{n}{p} \right\} + o(\sqrt{n})$$

provided that

(1)
$$\frac{n}{p \log \frac{n}{p}} - \frac{4\sqrt{n}}{\log n - 3} + \frac{p}{\log p} > 0 \quad \text{for } p \le n^{\delta}.$$

Now for sufficiently large n

$$\sum_{p \le n^{\delta}} \log \frac{n}{p} = \left\{ 1 + o(1) \right\} \left(\frac{n^{\delta}}{\delta} - n^{\delta} \right) + o(\sqrt{n}),$$

$$= \left\{ 1 + o(1) \right\} 2(1 - \delta)(1 - \epsilon) \sqrt{n} \ge (1 - \epsilon)^2 \sqrt{n};$$

hence it remains only to show (1) and

$$-\sum_{n\leq n^{\delta}}\log\left\{1-\left(\frac{4\sqrt{n}}{\log n-3}-\frac{p}{\log p}\right)\frac{p}{n}\log\frac{n}{p}\right\}=o(\sqrt{n}).$$

Noting that $p \log (n/p)$ and $p^2(1-\log n/\log p)$ are increasing functions of p for $p \le \sqrt{n}$ and n sufficiently large we have

$$\left(\frac{4\sqrt{n}}{\log n - 3} - \frac{p}{\log p}\right) p \log \frac{n}{p} = \frac{4\sqrt{n}}{\log n - 3} p \log \frac{n}{p} + p^2 \left(1 - \frac{\log n}{\log p}\right)$$

$$\leq \frac{4\sqrt{n}}{\log n - 3} n^{\delta} (1 - \delta) \log n + n^{2\delta} \left(1 - \frac{1}{\delta}\right)$$

$$= 4(1 - \delta)(1 - \epsilon)\delta n \left(\frac{2\log n}{\log n - 3} - 1 + \epsilon\right)$$

$$\leq (1 - \epsilon) n(2 + \epsilon^2 - 1 + \epsilon) = (1 - \epsilon^8)n$$

for all sufficiently large n. Hence (1) holds and

$$\sum_{p \le n^{\delta}} \log \left\{ 1 - \left(\frac{4\sqrt{n}}{\log n - 3} - \frac{p}{\log p} \right) \frac{p}{n} \log \frac{n}{p} \right\}$$

 $\geq \sum_{p \leq n^{\delta}} 3 \log \epsilon \geq 8 \frac{\sqrt{n}}{\log n} \log \epsilon$

which completes the proof.

	1	N89		V11115-2								
	n	s(n)		$\frac{e^{\sqrt{n}}}{s(n)}$	n	s(n)		$\frac{e^{\sqrt{n}}}{s(n)}$	n	s(n)		$\frac{e^{\sqrt{n}}}{s(n)}$
									l			
	2	•	1	4.11	40	6			77	391		
	3		1	5.65	41		212	2.84	78	9		
	4	1			42	2			79		2005	3.61
	5		2.	3.83	43		214	3.29	80	25		
	6	1	-		44	15			81	228		
	7		3	4.73	45	12			82	117		
	8	1			46	19			83		2375	3.81
	9	3			47		260	3.65	84	4		
	10	2			48	3			85	447		
	11		9	3.06	49	154			86	142		
	12	1			50	11			87	292		
	13		10	3.68	51	62			88	91		
	14	2			52	31			89		3351	3.73
	15	4			53		521	2.78	90	3		
	16	3			54	5			91	715		
	17		19	3.25	55	129			92	175		
	18	1			56	19			93	392		
	19		20	3.80	57	90			94	213		
	20	2			58	54			95	826		
	21	6			59		818	2.64	96	23		
	22	4			60	2			97		5698	3.32
	23		32	3.79	61		820	3.03	98	65		
	24	1			62	54			99	312		
	25	21			63	44			100	47		
	26	7			64	57			101		6122	3.78
	27	16			65	207			102	19		
20	28	7	64.		66	7			103		6141	4.16
२७	30	1	- 84		67		1189	3.01	104	166		
	31		85	3.08	68	62			105	24		
	32	9			69	147			106	269		
	33	18			70	8			107		6600	4.28
	34	11			71		1406	3.24	108	23		
	35	35			72	9			109		6623	5.16
	36	3	التر		73		1415	3.63	110	31		
	37	-	161	2.72	74	80			111	540		
	38	15			75	37			112	76		
	39	30			76	73			113		7270	5.69
				<u> </u>	1	<u> </u>			1	<u> </u>		<u> </u>

Two sequences KH we, a both whs

4. The table on the preceding page lists the value of s(n) for all $n \le 113$. All entries for s(n) were computed individually and checked by means of Theorem 2.

References

- 1. R. C. Entringer, Some properties of certain sets of coprime integers, Proc. Amer. Math. Soc. 16 (1965), 515-521.
- 2. J. B. Rosser and Lowell Schoenfeld, Approximate formulas for some functions of prime numbers, Illinois J. Math. 6 (1962), 64-94.

University of New Mexico

ON THE CONTENT OF POLYNOMIALS

FRED KRAKOWSKI

- 1. **Introduction.** The content C(f) of a polynomial f with coefficients in the ring R of integers of some algebraic number field K is the ideal in R generated by the set of coefficients of f. This notion plays an important part in the classical theory of algebraic numbers. Answering a question posed to the author by S. K. Stein, we show in the present note that content, as a function on R[x] with values in the set J of ideals of R, is characterized by the following three conditions:
 - (1) C(f) depends only on the set of coefficients of f;
- (2) if f is a constant polynomial, say f(x) = a, $a \in \mathbb{R}$, then C(f) = (a), where (a) denotes the principal ideal generated by a;
- (3) $C(f \cdot g) = C(f) \cdot C(g)$ (Theorem of Gauss-Kronecker, see [1, p. 105]).
- 2. Characterization of content. Denote by [f] the set of nonzero coefficients of $f \in R[x]$ and call f, g equivalent, of $f \sim g$, if [f] = [g]. A polynomial is said to be primitive if its coefficients are rational integers and if the g.c.d. of its coefficients is 1.

LEMMA. Let S be a set of polynomials with coefficients in R and suppose it satisfies:

- (1) $1 \in S$;
- (2) if $f \in S$ and $f \sim g$, then $g \in S$;
- (3) if $f \cdot g \in S$, then $f \in S$ and $g \in S$.

Then S contains all primitive polynomials.

Received by the editors April 27, 1964.