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THE NUMBER OF COPRIME CHAINS WITH
LARGEST MEMBER 2

R. C. ENTRINGER

1. In a previous paper [1] a coprime chain was defined to be an
increasing sequence {ay, - - -, ak} of integers greater than 1 which
contains exactly one multiple of each prime equal to or less than qy.

We let s(n), n>1, denote the number of coprime chains with larg-
est member 7. For convenience we define s(1) =1.

In this paper we will obtain a partial recursion formula for s(n) and
an asymptotic formula for log s(n). A table of values of s(n), n <113,
is also provided.

In the following p will designate a prime and p; will designate the
ith prime.

2. LEmma 1. A={ay, - - -, axr=p:#2} is a coprime chain iff
(i) 4’'= {al, <, Qraf 1S a coprime chain,
(i) pi_1 s the largest prime in A’.

Proor. If 4 = {al, IR ak=p,~7£2} is a coprime chain, then

(ii) pi-1isin 4 (and therefore is the largest prime in 4’) since by
Bertrand’s Postulate 2p; 1> p;, and

(i) If A" isnot a coprime chain, then there is a prime p a3 divid-
ing no member of A4’. Thus p divides (and therefore is equal to) a,
since 4 is a coprime chain, but this is impossible since a;_; <a,.

To prove the converse we note that if 4 is not a coprime chain, then
p; divides some member of 4’ and therefore Pi—1<ax—1/2. But again
by Bertrand’s Postulate there is a prime between ar—1/2 and a;
occurring in 4’ which contradicts (ii).

A direct result of this lemma is:

THEOREM 2. s(p,)= D i} s(n), 1=2.

n=pi1
THEOREM 3. 5(p) = D ncp 5(n) (n not prime).
Proor. The assertion holds for p =2. Now let ¢ and p be successive
primes with ¢ <p. If 5(¢) = >_.<, s(n) (n not prime), then

s(p) = sl + 22 s(m) = 30 s(n) (nnot prime)

g<n<p n<p
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then we have a contradiction, while y4 = (0) implies (A being simple)
that y=0, which also is a contradiction. Thus we have shown
|Uu, U]lCZ.

This result indeed generalizes the work of [1] and [4].

TreoreM 4. If A is simple (then [A, A]==A) and U is a proper Lie
ideal of [A, A), then U is contained in the center of A except where A is
of characteristic 2 and A-dimensional over Z, a field of characteristic 2.

Proor. Define [U, U]l=U® and UtV = [Um, Um]forall nz1.
Then, since 4 is simple, it has no nonzero nilpotent ideals. Thus,
except in characteristic 2, [U, U]CZ or U~=A. If the former, then
Theorems 7 and 9 of [4], in the case not characteristic 3, and Lemma
3 of [1] in this case implies UCZ. Now, by these same results, if
U® CZ, then UCZ. Hence { U®}~=A. Thus, by Lemma 9 of (2]
we have [U®, A]=[A4, 4], which contradicts U being proper.
Lemma 1 of [1] yields the result when 4 is of characteristic 2.

The author wishes to express his thanks to the referee, 1. N. Her-
stein, for his suggestions.
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by Theorem 2 and the theorem follows by induction.

3. The above result indicates marked irregularities in s(n), how-
ever, we can approximate log s(n) asymptotically.

TaeorREM 4. log s(n)~+/n.

Proor. Every coprime chain 4 (#) can be constructed in the follow-
ing manner. Let ¢;,, =1, - - -, &, ¢;>¢, for ©<j be those primes less
than +/n and not dividing #. Choose any multiple m.g; of ¢1 so that
miqp=n and (my, n)y=1. If ¢ | my let my=0. If golmy, choose any
multiple m.g, of g2 so that meg. =n and (m., nmigi) = 1. This process is
continued by choosing m; =01f ¢, | mjforsomej=1, - - - ,1—1, other-
wise choosing any multiple m.q; of ¢; so that m.q;<n, (m;, nouq: - - -
m;aqis) =1. The set {mgy, - - -, mugi} — {0} can then be extended
to a coprime chain by appending # and those primes p between v/n
and »# which do not divide # or any m;, and reordering if necessary.
This extension is unique since any multiple of a prime p, other than p
itself, must either be larger than =, not relatively prime to %, or not
relatively prime to all m.q;. Therefore

logs(n) = log [i} < > logn— D logp= {1 +o(1)}\/n.
P psVyn psvn

To obtain a lower bound for log s(z), coprime chains are con-
structed by choosing the m; in the following manner. Let m; be 1 or
any prime satislying ~/#n<mi<n/q, min. There are at least
w(n/q) —w(/n) —1 choices for m, since there is at most one prime
in the given range which divides #n. Let m; be 1 or any prime satisfying
Vn<myEn/q,, mylnmi. There are at least w(n/g)—w(+/n)—2
choices for m.. This process is continued until all multiples m,q;
have been chosen. In general there are at least

1r<%> — (/) — i

. (%) — a(v/m) — {r(v/n) — n(g))}

v

. (ﬁ> — 2r(x/n) + ()
choices for m;. The set {mlql, e, mqu} is then extended to a co-
prime chain as previously indicated. If w(n/g:) — 27 (v/n) +7(g:) 0,
then m; is chosen to be 1; hence the above construction is valid.

In the remainder of the proof we assume e given such that 0<e
<1/2. Define § by n?/8=2(1—¢€)/n, 1/log n<8<1/2. Then using
certain results from [2] we have
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ogs( = X log {r (—:;) ~ 2x(v/m) + +(0)

PS"l‘siP#’n

n 4+/n
z > log — + L= Sogn
1Tspgnd n logn —3 logp oln
p log —
P
n
= 2 log
pand n
p log —
j2

— _ 2.
B g}lalog {1 (logn -3 log p) w B » + o(v/n)

provided that
) n 44/n P

_lo n—3 lo
plog% g gp

>0 forp = n.

Now for sufficiently large

2. log
8

pPsn

8
= {1+ o(1)}("— — nﬂ) + o(+/n),
7 1]
p log "

n

= {1+ o2l = )A - dvn 2= (1 — *Vn;
hence it remains only to show (1) and

- Zalog {1 — ( i ? )ﬁlog%} = o(+\/n).

pan logn—3_logp n

Noting that p log (n/p) and p2(1 —log n/log p) are increasing func-
tions of p for p < +/n and # sufficiently large we have

4+/n b n 4+/n n < logn>
_ log— = — " plog — a1 —
<logn—3 10g[)>pog —SPng+p

p  logm log p
4 1
= $n5(1 — 8) log n + n? (1 - —)
logn — 3 8
2logn
=401 - 8§)(1 — e)&n(i -1 —{-—e)
logn — 3

IIA

QA-egn@2+e—1+6=(10—en
for all sufficiently large n. Hence (1) holds and
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4/n

4 >17 n}
logn —3 logp/ n P

LY

which completes the proof.
] 3.;” 3 .Sr
VBB NI

Vn
= > 3loge=8 ——loge
log n

psn®

—

V| ewn evn evn

n s(n) —_— n s(n) —_— n s(n)
s(n) s(n) s(n)

—+ 1
2 1 4.11 0| 6 77 | 391
3 1 |5.65 41 212 | 2.84 78 9
4] 1 42| 2 79 2005 | 3.61
5 2. | 3.83 43 214 | 3.29 80 | 25
6| 1 44| 15 81 | 228
7 3 |a.73 45 | 12 82 | 117
8| 1 46| 19 83 2375 | 3.81
9| 3 47 260 | 3.65 84| 4
10| 2 48| 3 85 | 447
11 9 |3.06 49 | 154 86 | 142
12| 1 50| 11 87 | 292
13 10 | 3.68 51| 62 88 | 91
14| 2 52| 31 89 3351 | 3.73
15| 4 53 521 | 2.78 % | 3
16| 3 54| 5 91 | 715
17 19 |3.25 55 | 129 92 | 175
18] 1 56| 19 93 | 392
19 20 | 3.80 57| 90 94 | 213
20| 2 58 | 54 95 | 826
21| 6 59 818 | 2.64 96 | 23
2| 4 60| 2 97 5608 | 3.32
23 32 |3.79 61 820 | 3.03 98 | 65
24| 1 62| 54 99 | 312
25 | 21 63 | 44 100 | 47
26| 7 64 | 57 101 6122 | 3.78
27| 16 65 | 207 102 | 19
28| 7 66 | 7 103 6141 | 4.16
o1 1T ¢ 67 1180 | 3.01 || 104 | 166
31 85 | 3.08 68 | 62 105 | 24
2] 9 69 | 147 106 | 269
33| 18 70| 8 107 6600 | 4.28
34| 11 71 1406 | 3.24 || 108 | 23
35| 35 721 9 109 6623 | 5.16
36| 3. 73 1415 | 3.63 || 110] 31
37| 7161 | 2.72 74 | 80 111 | 540
38| 15 75 | 37 112 | 76
39| 30 76 | 73 113 7270 | 5.69
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4. The table on the preceding page lists the value of s(n) for all
n=<113. All entries for s(n) were computed individually and checked
by means of Theorem 2.
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ON THE CONTENT OF POLYNOMIALS
FRED KRAKOWSKI

1. Introduction. The content C(f) of a polynomial f with coeffi-
cients in the ring R of integers of some algebraic number fleld X is
the ideal in R generated by the set of coefficients of f. This notion plays
an important part in the classical theory of algebraic numbers.
Answering a question posed to the author by S. K. Stein, we show in
the present note that content, as a function on R[x] with values in
the set J of ideals of R, is characterized by the following three condi-
tions:

(1) C(f) depends only on the set of coefficients of f;

(2) if f is a constant polynomial, say f(x)=ea, ¢ €ER, then C(f)
= (a), where (a) denotes the principal ideal generated by a;

(3) C(f-g)=C(f)-C(g) (Theorem of Gauss-Kronecker, see [1, p.
105]).

2. Characterization of content. Denote by [f] the set of nonzero
coefficients of fER[x] and call f, g equivalent, of f~g, if [f]=[g]- A
polynomial is said to be primitive if its coefficients are rational in-
tegers and if the g.c.d. of its coefficients is 1.

LEMMA. Let S be a set of polynomials with coefficients in R and sup-
pose it salisfies:

1) 1€S;

(2) if fES and f~g, then gES;

(3) if f-gES, then fES and g&ES.

Then S contains all primitive polynomials.
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