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1. Congruent Numbers

A natural number m is called congruent if it is the area of a right triangle with
rational sides. An equivalent condition, as one easily checks, is that there should
exist a rational square which, when increased or decreased by m, remains a square.

Thus 6is congruent because it is the area of the (3, 4, 5)-triangle or because %2, %> + 6,

and 22 — 6 are all squares, and 5 is congruent because it is the area of the (3, %, %)-
triangle or because 1&5L, 1881 +5, and ‘&% — S are all squares.

The problem of congruent numbers is very old: The two examples just given
can be found in an Arabian manuscript, written more than 1000 years ago, and in
Fibonacci’s book “liber quadratorum”, published in 1225. More about its early
history and the work done before 1920 can be found in Dickson’s history of the
theory of numbers [3].

A number m is also easily seen to be congruent if and only if there is a non-

trivial rational point on the elliptic curve

— E,:my*=x>—x (1)

(take the triangle with sides x*>—1,2x,and x* + 1), i.e. if the rank of the Mordell-
Weil group E,(Q) is positive. It was observed by Tunnell [7] that the conjecture of
Birch and Swinnerton-Dyer and a recent result of Waldspurger [8] combine to
give a complete conjectural answer to the problem. We state this in a slightly
different form from that given by Tunnell. Since the condition “m congruent” is
unchanged when m is multiplied by a square, we can and will assume m squarefree.

Conjecture. For m squarefree, define

[ (—1) (modd)

m=a2+ 2b2+ 8¢?

c(m)=- :

[ (—1) (meven).
m/2=a2+b2+8¢2

Then
m is congruent <> c(m)=0.

This implies in particular that all numbers m=5, 6 or 7 (mod8) should be
congruent, since the sum defining ¢(m) is empty in this case.

The purpose of this note is to verify the conjecture for m less than 2000.
Specifically, we shall show:

Theorem. Let m <2000 be a squarefree number. Then m is congruent if and only if
m=35, 6 or 7 (mod8) or m is one of the 106 numbers in Table 1.

Previous numerical results can be found in a survey article by Guy [5] as well
as in the aforementioned article of Tunnell.
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2. The Associated L-Series

The curve E, has complex multiplication by Q()/ —1) and its Hasse-Weil zeta

function therefore has known analytic properties. This zeta function is given by
1

LB Sy = I1 A
s m —8 4 p1-23
(p.2m)=1 = a,p *+p

witha,=0for p=3(mod4)and a,=2-(—1)’-rfor p=1(mod4) where p=r*+4s*
with r=1 (mod4). It extends analytically to all s and satisfies the functional
equation

Re(s) >3

s 2—5
(»Nﬂ) I'(s)L(E,, s)=¢,, (N—) F(2—s)L(E,,2-5)
2n 2n

with

| o 32m* for modd - _ {41 for m=1,2,3(mod8)
m~116m?> for meven’ ™ |—1 for m=5,6,7(mod8)’

(For a detailed exposition of the properties of E,, and its L-series we refer to the
book of Koblitz [6].)

According to the BSD-conjecture E,, should have positive rank if and only if
L(E,, s) vanishes at s=1, i.e.

m congruent < L{E . 1)=0;

Form=35, 6, 7(mod8) the condition on the right is always satisfied because of the
functional equation. For m=1, 2, 3 (mod8) the work of Waldspurger implies a
formula for L(E,, 1) as a simple non-zero multiple of ¢(m)?. This explains the
conjecture stated in Sect. 1.

The following is known:

1) If L(E,, 1)#0, then E, (@) is finite. This is a special case of the theorem of
Coates and Wiles [2], which applies to any curve with complex multiplication.

i) If L(E,,, 1)=0 and L(E,,, 1)40, then E,(Q) is infinite. This is a special case
of the theorem of Gross and Zagier [4], which applies to any elliptic curve
parametrized by modular functions, in particular to any curve with complex
multiplication.

Combining this with what was said above, we get the following criteria:

(A) If m=1, 2 or 3 (mod8) and ¢(m)=+0, then m is not congruent.

(B) If m=5, 6 or 7 (mod8) and L(E,, 1)+0, then m is congruent.

Thus we can proceed as follows:

[fm=1,2,3(mod8), then if ¢(m)+ 0, we know by (A) that m is not congruent. If
¢(m) =0, then the BSD-conjecture implies that E,(Q) should have rank at least 2
[since L(E,,s) has an even functional equation], so we expect relatively small
solutions to (1) and we can simply search.

Ifm=35, 6,7 (mod8), then we calculate L(E,,, 1). This can be done easily using
the algorithm described in [1]. If L(E,,, 1) is not zero, we know by (B) that m is
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congruent. If it is zero, then the BSD-conjecture predicts that E,(Q) has rank at
least 3, so again we expect to find a small solution by a simple search.

In principle one could dispense with criterion (B), since we could simply exhibit
a solution of (1). However, when the rank of E, (Q) is 1 the smallest solution of (1)
can be large (for instance, for m =157 the simplest rational square x with x +m also
squares has 188 decimal digits in its numerator and denominator), and it is not
very easy to write down such solutions.

3. Results

For numbers less than 2000 the results of the procedure described above are as
follows: Of the 602 squarefree numbers m <2000 with m=1, 2, 3 (mod8) there are
106 for which ¢(m)=0. For each of these a non-trivial solution of (1) is given in
Table 1, in the following notation:

We write (1) in the form

m-square=A-B-(A—B)-(A+ B)

(4 and B are the numerator and denominator of x).

Then since m is squarefree the numbers 4, B, A— B, A+ B have the form sa®,
th?, uc?, vd* for some decomposition of mass- ¢ - u - v and some natural numbers a,
b, ¢, d; these 8 numbers are given in Table '\be]ow (blank =1).

m s t u v a b c d m s t u v a b c d
aq] ! 2 17 3 2 1003 59 17 63 a =51y
41 ! 1 | 41 5 4 3 1057 | 151 7 44 333 161 635
65 ¢ ' 5 13 3 2 1073 37 29 23 14 3 5
137 | 137 1 5 56 17 81 1081 1081 35 12 37

138 6 1 23 2 R \ s 1105 13 85 7 6

145 29 5 \ 2 3 7 1113 7 3 53 2 5

154 ! 2 7 11 k! \ \ J 1122 2 17 33 5 2

161 | 7 23 4 \ 3 | 1131 13 3 29 4

194 97 2 6 5 13 1145 | 1145 5 52 161 177
210 5 2 3 7 \ 1146 2 191 3 13 7 23
219 73 3 ! 4 5 11 1154 2 577 17 12

226 1 2 113 9 4 7 i 1155 11 7 15 2

257 \ 257 153 104 7 185 1169 7 167 12 29 43
265 \ 5 53 7 2 3 ) 1178 2 31 19 5 9
201 \ 3 \ a7 7 4 1185 15 79 8 7

299 \ 13 23 ' 6 7 1186 | 593 2 193 1972 3783 5465
313 1 1 ] 313 13 12 5 1195 5 239 22 7 27
323 17 19 \ ) 5 4 11 27 1201 1201 25 24 7

330 6 5 ) 11 ] ' 1217 | 1217 65 1504 1697 2721
353 353 17 8 15 1241 1241 29 20 21

n 53 7 2 5 9 1249 1249 481 360 319 17
386 2 193 11 6 7 X 1282 | 641 2 10 21 29
395 5 79 4 Kl 1321 | 1321 85 2952 911 4273
410 41 10 \ 2 9 1330 14 5 19 3

426 6 i 7n 4q 5 N 11 1339 13 103 34 9 47
434 2 31 ) 7 4 \ 3 1346 | 673 2 17 42 437 445
442 ! 26 17 ] 11 2 15 1379 | 197 7 2 13 15
457 . ; 457 253 204 7 325 1387 73 19 25 a8 43 299
465 ] 15 \ 31 4 A \ ) 1393 7 199 260 531 31 869
505 | 101 5 X ' 2 9 11 1411 17 83 37 16 45 211
s14 | 257 2 : 4 15 17 1419 3 11 43 3 4

546 ” 6 13 \ \ 1434 6 239 10 19 31
561 17 33 4 1443 k! 13 37 5 2

602 2 43 5 3 ' 1482 19 6 13 5
609 21 29 5 2 1513 89 17 8 5 3
651 7 3 3 2 5 1561 223 7~ 116 3 107 a7
658 2 47 7 8 9 5 1595 5 11 29 2 3

674 | 337 2 12 7 25 1610 14 5 23 3

689 | 689 : 20 17 33 1633 71 23 36 203 47 365
721 ¥7 { 103 : 4 3 ’ 11 1635 | 109 15 2 7 13
723 3 \ 241 103 20 97 T 1649 | 1649 40 7 57
731 43 17 39 4 7 47 1651 13 127 4 9 17
761 | 761 ' 1 29 40 799 801 1659 21 79 10 11
777 37 3 7 2 3 11 5 1705 5 11 3 2 3

793 | 793 \ - 5 132 49 193 1731 | 577 3 4 25
866 2 433 19 6 17, 1745 | 349 5 [ 13 23
889 7 . 127 8 3 1762 | 881 2 20 9 a1
890 10 89 7 2 3 \ 1770 2 3 5 59 4 3

905 | 181 5 3 19 1785 3 5 7 17 2

915 61 15 2 11 1794 26 23 3 7
985 ! 3 5 197 163 82 63 13 1858 2 929 27 10 23

987 21 ) 47 4 17 25 1939 277 7 6 o 23
995 5 \ 199 8 11 \ 21 1995 3 7 5 19 2

-
: A2596%0 AZ§76‘60 i
£626T —&1516%F —
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For the 613 squarefree numbers m<2000 with m=5, 6, 7 (mod8) the
calculation of I/(E,,, 1) was carried out to about 6 decimal places. A small excerpt
from the result is given in Table 2.

In all cases except m= 1254 the value of L(E,,, 1) lay between 0.86 (m=1669)
and 30.09 (m = 1743), while for m = 1254 the value was zero within the accuracy of
the computation. Using the results of [4], one could now check that L(E,,, 1) is in
fact zero, but we do not really care about this since the converse of criterion (B) is
not true.

Table 2 m I(E,, 1) m L(E,, 1)

5 2227370 1245 16.833922

6 1.902460 1246 4296937

7 2962115 1247 11.999654
13 4241565 1253 8.635734
14 2991074 1254 0.000000
15 4038635 1255 11.548777
21 3.802609 1261 7.363428
22 4755225 1262 21.009608
23 5.668501 1263 12.558427

For m= 1254 we write the equation of E,, in the equivalent form
y:2=x3—m?’x=x-(x—m)-(x+m)
(x—mx, y—»>m?y). The three smallest integer solutions
(x,y)=(—198,17424), (—171,16245), (—98,12376)

are linearly independent over Z, so rank E,,(Q) = 3. In fact the rank is exactly 3, as
can be seen by a descent argument. A numerical calculation shows
L"(E,, 1)~ 322.546347 +0, so the order of vanishing of the L-function at s=1 is
also 3, in accordance with the BSD-conjecture.
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