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1. Intreduction. We write [?é 7J ;

f(x)=(I—x)(l—xz)(_ll-)rﬁ)le Siell G £ ) % ( .
and n;)p(n)x":l/f(x), , "A{"“} 5% N g?b‘f

so that p(n) is the number of unrestricted partitions of n. Ramanujan [1] conjectured in 1919
that if g =5, 7, or 11, and 24m = 1 (mod g"), then p(m)= 0 (mod ¢"). He proved his con
ecture for n = 1 and 27, but it was not until 1938 that Watson [4] proved the conjecture fo'_r
g =5 and all n, and a suitably modified form for g =Tandalln. (Chowla [5] had previousi§'
observed that the conjecture failed for g =7 and n = 3.) Watson’s method of modular
equations, while theoretically available for the case g = 11, does not seem to be so in practic%
even with the help of present-day computers. Lehner [6, 7] has developed an essentialfj
different method, which, while not as powerful as Watson’s in the cases where I'y(g). has genus
zero, is applicable in principle to all primes g without prohibitive calculation. In particular
he proved the conjecture for g = 11-and n =3 in [7]. Here I shall prove the conjecture for
g=11 and all n, following Lehner’s approach rather than Watson’s. T also prove the
analogous and essentially simpler result for c(), the Fourier coefficient] of Klein’s modular
invariant j(7) as : : : : ' : 3
THEOREM 1. If m= 0 (mod 11%), then c(m) = 0 (mod 117). &

The full truth with regard to Ramanujan’s original conjecture is thus now known to be:

f 24m =1 (mod 5°7°11), then p(m) = 0 (mod 5°7%11°), where f§ = [(6+2)/2]. 4

In view of Watson’s result we need only prove here ' a
THEOREM 2. If 24m =1 (mod 11"), then p(m) = 0 (mod 117). ;

The general plan of the paper is as follows. In §2 we describe the notation and general
theory required for the proof of Theorem 1. In §3 we carry through sufficient detailed caIcu-;
lation to prove Theorem 1. In §4 the additional theory required for the proof of Theorem 2
is given, and in § 5 Theorem 2 is proved. Necessary calculations which would unduly inter:
rupt the main argument are given in Appendices. ' 4

2. Functions on I'j(11).

2.1. We consider the subgroup I'g(11) of the full modular group I'(1), defined by those
transformations

at+b

+d

T Ramanujan [1, 2]. See also Rushforth [3].

{ We take the Fourier series of j(7) with leading coefficient unity and constant term zero. Thus j(7)
x14+196884x + ... with x =e2nir,

TVt = aj

(a, b, ¢, d, integral with ad — bc = 1)
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6f I(1) that satisfy c=0 (mod 11). To(11) is of genus 1, and its fundamental region has two
cusps © = ico and 7 =0, with local variables x = e2™*, x = e~ 2"/11* respectively. By ““an
entire modular function on I'y(11) ” we understand a function I (), regular in Im 7 > 0, that
satisfies F(V'7) = F(z) for VeIl o(11), and has at most polar singularities in the local variables
at the two cusps of I'g(11). For such F(7) we shall write FeS. If in addition F(7) is zero at
¢ =ioo we write Fe S®. Finally, if F(z) is zero at 7 = 0 we write FeS°.

- We refer to the expansion of F(%) in powers of x = e®™* at 7 = ico as its Fourier series

 Lemma 1. IfF(:)€S, then F¥(x) = F(—1/117)€S.
. A simple proof is given by Newman [9, Lemma 1]. Tt is clear that the expansion of
F(r)at t=0is the FS of F*(1), and that Fe S, S° <« F*eS° S>.
_ We pow introduce a linear operator U defined by

0 [(t+r
1UF(z) = r;)r*(—u—), o
UM F(z) = U(UFR)) (n = 1).
U(a,F,+a,F,) = a;UF;+a,UF,,
if a;,a, are constants. If the FS of F(q) is

2 bt 0
R X, ",

PN N r=ro

, then the FS of UF(7) is =
'“ . Z 0y lrxr‘
L 11rzro

By UF(—1/117) we shall understand the effect of replacing 7 by —1/117 in UF(z) and not
* UG(1) where G(z) = F(—1/117) .
_ ~ Wealso write

| S o Fl(r)EFz(r) (modm) . ‘ @

if all the respective coefficients in the FS of F;(1) and Fy(z) are congruent modulo m. Thus
nothing is asserted by (2) as to the expansions at = 0.

=Tt will be convenient in the sequel to assess divisibility by powers of 11 by using an expon-
Cﬂﬁa_l'yaluation. Accordingly, for integral a, we define n(a) by

=7

.’-. :\‘I v . lln(a) | a, 111:(a)+ l*a’
and for rational a = b/c we define

- 7(@) = n()—7(0).
\Yé v ._.,te conventionally n(0) = co, and regard any inequality n(0)  k as valid.

i
]
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We have

n(ab) = n(a) +n(b),
n(a+b) = min (n(a), (b)),

with equality if n(a) n(b). -]
The crucial results on UF(r) are given by Lehner (Theorem 8 and (8.81) of [6]), and ar_é'zq

follows.

Lemva 2. If F(2) €S, then

() UF()es, (i) HNUF(=1/119)— 1LUF(117) = F(—1/1217)~ F(z),

Note that in (i) UF(117) and F (—1/1217) are not themselves in S. It is also immedigt;
that : :

F(r)eS® = UF(z)eS™.
((4) is not valid for S,.)

Reverting now to the proof of Theorem 1, we see that, since j(7) €S, then U(r)esS™

nz1. Theorem 1 is then equivalent to proving that the FS of 117"U% () has inte
coefficients. To establish this, we obtain fi

then use Lemma 2 to obtain detailed info
functions.

2.2. Alinear basis for functions on T"

LemMA 3. For all integral n > 2, there exist functions G(7), 9,(%), h,(7) with the JSollow

properties: ’
® Gi(v)eS°, g (1)eS™, h(z)es™,
(i) Gu(=1/117) = hy(z) = 11°Mg,(7),
where 0(n) = 6k+2,3,4,6,6
according as n=>5k+2,3,4,5,6 (k= 0).
(i) The FS of G,(z) has integral coefficients with leading term x—",
(V) The FS of g,() has integral coefficients with leading term x¥™,
where Y(m) =5k+1,2,3,5,4
according as n=>5k+2,3,4,56 (k=0).

Further, there exists a_function B(t)e S with simple poles at © =
B(—1/117) = B(1). The FS of B(z) has integral coefficients, with leading term x~1,

Since the Riemann surface of T
immediate corollary:

‘%

rst a standard basis for the functions of S, and
rmation as to the effect of the operator U on thes

o(11). The following lemma is proved in Appendix A

0 and © = ico, such th'_

o(11) cannot support a univalent function, we have th
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FS of h,(1) commence with different. powerst of x, by Lemma 3(iv).
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LemMA 4. Suppose that F(x)e S has a pole of order M at t =0 and q pole of order N at
t=1i00. Then

F() = ZNZA_,G,(r)+,1_IB(z)+AO+ gz Ah,(0),

where the A(-N=Zr<Mm ) are constants.
Finally we restate Lemma 4 in the case of greatest interest to us.

ey T

/ ” LEMMA 5. Suppose that F(z)e S* has a pole of order M at t = 0. Then

b s M M
FO =} Ah(z), F(-1/111) = Y 4G (7).
g e r=2 r=2

For a given F(1)eS®, the constants 4, in Lemma 5 can be determined from the FS
of either F(—1/117) or F(7). We are mainly concerned not with the exact value of 4, but
with n(4,). In §3 below we obtain suitable lower bounds for n(4,) in the case when F(z) =
Ug,(r). The calculations take a simpler form when we consider F(t) = Uh,(7); the tran-
sition to Ug,(z) is immediate from Lemma 3(ii).

1 3.1 Since (1)e S, we have

11UR(7) = Ye,.h(0), )

- - where the é,,, are constants, by Lemma 5. It is convenient to regard the sum in (5) as one from

r=2to oo, although all but a finjte number of the c,, are zero. We have also

| HUR(~1/117) = Y¢,,G,(z) = - ©
and, by Lemma 2(jj), ‘

1UR(~1/117)~11UR(117) = = h, (D) +h,(—1/1217). @)
: It foﬂows from (7) that the principal part of the FS of 11 Uh,(—1/117) is the same as that

of h(~1/1217) = G,(117), since Uh,(111) and h,(%) are zero at © = joo. Hence the coefficients -
€ may be uniquely determined by the fact that the FS of

G,(119)~ Y., G,(x)
A

h It will then necessarily have no term in x~ 1, which
provides a check in numerical work. Tt follows that the ¢, are integers (since each G, has
léading term x7', and the FS of G,(117) has integral coefficients) and also that

CCw=0 if r>11n. ®)

R Considen'ng next the determination of the ¢ur from (5) we observe that for different r the

1

SRR kE T The linear basis used by Lehner [6, 7] does not have this property.
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Thus, since every coefficient in the FS of 11Uh,(7) is divisible by 11°**, and the leading
term in the FS of 4,(7) is 11°0x¥"), we have ' ' '

n(c,) = 0(n)—0(r)+1
and T e, =0 if 1) < ¥(n).

‘We now establish certain conditions under which n(c,,) = 3.

3.2. The values of c,, (mod 113). All congruences in this section are to the modulus '_1 :
1t follows from (6) and (7) that 1

o119~ 117%,(0) = $er, G0, Gu(110) = TeuGx) (n23).

We shall use the symbol (k,1,m) to denote an expression of the form

-1 ‘m—1 N
112;,‘ LG () +11 Z' iiG,(r)+Z 2,G(v),

G,(117) —112g,(r) = (2,9,19), G;(117) = (8,18,28).
Now Table 5 in Appendix B shows that

0
Gi(T)Gj(T) = _2_3 #Giy j+r(7:)’
where the p, are integral,and p_;, p_, = 0 (mod 11), for all i and j. It follows that

(ks 1y, my)(kz, 1, my) = (k3, I3, ma),
where - ky =min(k,+m,—1, ky+my;—1, 1, +1,-1), .
Iy =min(l, +m,—1, l,+m,—1), \
my=my+m,—1.

Further, from Table 6 we have, for m = 4,

112g,(7). (k, I, m) = (m—2, 0, ).
Thus

G4(117) = G(111)—11G5(117) = (17,27,37),
G4(117) = G,(117)G5(117) — 11G,(117) = (26,36, 46),
Ge(117) = G,(117)G,(117) = (35,45, 55),
G,(117) = G,(117)G(117) = (44, 54,64).
+ This was done in three different ways on three different machines: firstly using Lemma 9 on a Diell
desk calculator at Durham University; next using (5) on an Elliott 803 computer at Durham University; and§

finally using (6) on the L.C.T. Atlas 1 computer at Chilton. The computing times were respectively one
one hour, and ten seconds.
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It is now easily seen by induction, since G, 5(7) = G,(7)Gs(7), that

' G,(117) = 9n—19,9n—9,91+1) (1= 3), (14)
and thus, by (11),

,:r; a(c,)=3 if r<9n—20, n3. as)t

YR
o
Faite -

" 3.3. The values of ¢, (mod11%). We have 11Uh,(t)= 0 (mod 11%) for n =3 (since
f(m)+1 = 4), and (5) with n(c,y) 2 2, n(c2,) = 1 gives 11Uh,(117)= 0 (mod 114).

...~ Then, by (6) and (7),
S Gy(115)—112g,() = ¥ ¢5,G,(x) (mod 11%),
' G5(117)—11%g5(x) = Y ¢3,G(z) (mod 11%), 16)

; ._ G,(1170) =Y ¢, G,(x) (mod11%) (n=4).
Hence, by arguments similar to those of §3.2, we obtain .
: ¢, =0 (mod 11%) for r<15, e, =0 (mod11%) for r < 33,

A crude induction, using Table 5 and (15), now shows that

Csera, =0 (mod11%) for r < 15k+18, k1. a7

We summarise our results on ¢,, in the forms actually required later.

> Lewma 6.

. n(c,,,) =0 always, : : (from §3.1)
n(c,,) = 0(n)—6(r)+1 always, . (from (9))
! forn=20r3,9<r<1l, | (from (12))
forn=2o0r3,r<8, (from (12))
‘ forn=4,r= 16, ' (from (15))
forn=5,r < n+tl14, (from (15))

forn=2(mod 5), n=7, r=n—1orn—-2, (from(17))

) (from Table 7)
¢ 53 3-{‘- We now use the results of §3.3 to show that, in effect, functions of a suitable form

ﬂ . remain of that form under the operation 11~ *U. This is the basis of the proofs of Theorems
Ky "‘*A:T This result is by no means best possible. We can, by consideration of cases (mod 5), establish results

with 11z instead of 9n on the right-hand side of (14), but (15) suffices later.
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3.5. Proof of Theorem 1.
We may express Lemma 2 (ii), in the form:

4

LEMMA 9." If F(7)€ S, then F(—1/117)+11UF(7) is an entire function on the full modu a
group T'(1).
Choosing F(z) = B(z), we have, since the FS of B(t)is x ' —5+..

60-+B(z)+ 11UB(z) = j ().
Now U{B(7)+5}€S>, and 11UB(~1/117) has FS x ' 4-0(x~1). Hence

.

11

11{UB(~1/119)+5} = ¥ ,G, (%), .f'
n=2

where the «, are integral constants, and so
. : 11
11" Y{UB(x)+5} = Z 11809~ 2g()eX.

Thus 17105 = 11‘1U{B(‘c)+5}+U2{B(r)+5}eX, 3

by (28). Repeated application of (28) shows that 117"U”(z)€ X for n = 1. ;
Now the FS of any function in X has integral coefﬁments while the FS of U% (1:)

0

Y ¢(11"m)x™. Hence for all m =1, n > 1 we have that 11~ c(l l"m) is an integer, which-

m=1

Theorem 1.
Theorem 1 is best possible in the sense that ¢(11") £ 0 (mod 11"*!). We have

17IUj (1) = 0,9,(r)  (mod 11),

Now o, = 1627 and so n(a;) =0. Hence, by repeated application of Lemma 8, we ha
(since Y° < X9

117U (r) e X°,

and so 117"U% () = k,g,(7) (mod 11),
where n(k,) = 0.

Thus 17"e(11m) =k, (mod11),
and so c(11M=£0 (mod11*?),

4.1. We now define
1) = 7 (x) (Imt>0),

where f@)=]]Q-x") and x=e**, L)
r=1 r

and $(x) = n(1212)/n(x) = xF ()] f(x), D(z) = 1/b(x). (UE
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We also let
L1 =3.11""1 1124 (n21), D
L,=(23.11"+ )24  (n21),
so that /, is the least positive integral solution of 24/, = 1 (mod 117).
. Further let
Azay(0) = F(x*") X, p(I1" ity )™,
m=0
(nz1), (32

An®) =1(x) i P4 LY,

Li(@) = Ug(2),
Ly (t) =ULy,_4(r) - (n21), (33)
T Lnis(® = {USGL2(®} (12 D). |
We shall prove by induction that, for n = 1, A(x) is the FS of L (). We have

hadkd,
TR

e U{F,(117) F5(1)} = F,(x) UF ().
Now the FS of () is
; XFIH) § pmer,
oo that the FS of Ud(2) is " )
- | ) (x“)miop(umw)xm“ = Ay(%).

, Assumlng that the FS of L,,_,(z) is Az,_,(x), we see that the FS of L,,(7) = UL,,-4(1) is
f(x) Z p{11*"~ 1(11m+10)+12,, 1}x"‘+1 = L,,(x).

: Fmally if the FS of L,,(7) is A,,(x), then the FS of Lz,,“('r) U{¢()L,,(7)} is

JG Z P{llz"(HPn+6)+lzn X" = Loy 4(X)-

Smce the expansions of 1/f(x) and 1/f(x*") have mtegral coefficients with leading terms unity,
Tbeorcm 21is equlvalent to :

)
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4.2. Since ¢(<) is not a function on I'y(11), but on I'y(121), we cannot apply the methods
of §§2 and 3 immediately. However we do have

LemmAa 11. If F(z)eS®, then
Q) U{d(F()}es,

(ii) the principal part of the expansions of U {¢(T)F(r)} in powers of x = e~ ™It gt ji
pole © =0 is the same as the principal part of the FS expansion of 11~ 2Q(7)F(—1/1217) in
powers of x = e**F.

Further (i) and (ii) hold in the special case F(7) = 1.
Lemma 11 is proved by Lehner [6, Theorem 8]; there are some misprints corrected in
Lehner [7, page 178].
‘We now have, by Lemma 5,
112U {¢p(0)h, (1)} = Y. dnh(7), (349

where the d,, are constants, and in fact zero if 11y(r) < ¥(n)+5 or r > 11n+5. Further the
d,, are uniquely determined by the fact that the FS of

11n+5

q)(T) Gn(llt)— Z danr(T)
r=2
has no terms in x~11*75, ..., x73, x~2. Hence

(d,) = 0. (33)
We have also, from (34),

1P OU{§(0)g,0} = ¥ dur1170,(0),
and thus n(d,,) = 0(n)—0(r)+2. (36)
We could, by using |
B(D)G,(117) = Gs(x) (G} (mod 11),

obtain quite easily conditions under which n(d,,) = 1. Unfortunately this is not quite enough
to prove Theorem 1, and we require the following

LemMa 12,

®(1) = G5(1)+11{Ga(7) + 2G3(1)+ Go(1)— 1+2g5()+393(1) +94(0) +595()}  (mod 11%).

This is proved in Appendix C.
We use the symbol (/,m) to denote an expression of the form

11 "'i‘l AG(D)+ i G(2),
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where | < m = N and the 2, are integral constants. Then in terms also of the notation of
§3,2, we have (usmg Tables 5 and 6)

o(t)(k, I, m) = (I, my) (mod 112) (m = 7), 37
whcrcm, =m+5, |, =min(l+5, m-5).

 Thus B(1)G,(117) = (14,24) (mod 11%),
A O()G,(117) = On—4, 9n+6) (mod11?) (n2 3)
by (12) and (14). Hence
a(d,) =2 if r<9n-5. (3%
wC can now prove the result complementary to Lemma 7. We have
LEMMA 13. IfF(1)e Y, then 117 'U{¢p(x)F(v)} e X.
1 ﬂProof We have, by (34),

4 11U Y g 110G (R)g,(0) = T Y g1 11073000, g,(2).
Thus we have to show that, for all n and r,

sigbi n(n) — 3 —6(n) +6() + n(dpr) Z &) (39)
Singé ;z('d,,,) >0, (39) holds if 6(r)—&(r) = 6(m)—n(n) + 3. This is satisfied in the cases
o nx4, rzn+10; n=2o0r3, rz 12. ] (40)
Also since n(d,,) = 0(n)— 8(r) +2, (39) bolds if n(n) = E(r)+1. This is satisfied in the cases

‘ nx4,r<n, n=3,r=2 41

Next, for n>3 and n+1 £ r < n+9, we have a(d,) =2 and 0(r)—&(r) = 6(m)—nn)+1,
whic}_xiimplies (39) for

wim! j n=3, n+tl<r<nto. . (42)
Sxmxlarly we obtain

$ - n=2 4=<r=sl1L | 43)
Fmaﬂy we have by direct calculation n(dss) = 3, n(d;,) = 3, n(d,3) = 4, which give (39) for
.“;_ :: n=2 r=2and3; n=3r=3. 44

Smcc (40) to (44) cover all integral n,r withn =2 2,r = 2, Lemma 13 is proved. We have also

LEMMA 14. If F(x)e Y°, then 117 'U{¢())F(v)} € Xx°.
;@_Wc have
At o’

e = Y1302 = Y say.
(d.)) = 0(n)—B(2)+2, so that for n2 4, n(n) 22, and so a(e) = 1. For n=3,
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n(ds,) = 4 by direct calculation, and so n(s;) = 1. Hence

A =p,1173d,, (mod 11).

But n(d,,) = 3, and hence if n(u,) = 0, then n(1,) = 0. This proves the lemma.

5. Proof of Theorem 1.
Using the remark at the end of Lemma 11 we find

Ly(7) = Ug(r) = 11g,(t) +2. 11%g5() + 1% 4(c) + 11%g5(2).

Hence 117'L,(T)e X°. It is now easily seen, by using the definition of L,(z) in (33) am
Lemmas 8§ and 14, that : : :

11172, ()eX®, 1172"L, (1)e Y°.

This proves Lemma 10 and so Theorem 1. In addition we see, as in §3.5, that Theorem T
best possible in the sense that

p(1l)£0 (mod11™*1),

It is clear that the inductions used to prove Theorem 2 are dominated by the values ¢
n(c;,) and n(d,,), in the sense that were either of these greater we could with greater eff
establish a congruence modulo 1113%2) or thereabouts. The actual computed values of n(c,
and n(d,,) are much larger than those given by our inequalities as is shown by Tables 7 and
the difficult part of the induction, apart from * accidental * low values of » and r, is when ri
close to », and in fact it seems certain that n(c,,) and n(d,,) are about equal to » in this cas
not merely 3 or 4 as we prove. The introduction of a basis g,(t) with different orders of zerc
at 7 =ioo is needed to cope with the case when r < n; the numbers 0(n) == 6n/5 which thi
involves are an inevitable and not wholly desirable complication. For r > n Lehner’s basms
equally satisfactory. Finally, the actual classes of functions X, Y suffice for the induction, ané
are not best possible. We could use n(d,,) = 1 only, and a more elaborate form of Lemma
plus a good deal of actual computation for low values of nand r. This would avoid the appea
to Fine’s equation, but the present method is shorter. .

We may observe finally that, in comparison with ¢ =5 and g = 7, this proof is indee
“ langweilig >, as Watson suggested. In those cases, we can in effect deal directly w1tn
Uy"(z) at t=ioo, using the modular equation. In fact, his actual induction can &
reducedt to about 2 pages each for ¢ = 5 and g = 7, if it is expressed in terms of 7(c,,) rather
than fully written out formulae, by using explicit inequalities of the type n(c,,) = [(Sn—r+1)/2)
for g = 5. 1 think it likely that in the present case g = 11 there exists an inequality

7z(Cm') = [(11""')""5)/10]

where é = 6(n, r) is small and of irregular behawour but I can at present see no techmque fot
establishing this.

 See A. O. L. Atkin, Ramanujan congruences for pi(n); to appear in Canadian J. Math.

%o B AL Y S
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| APPENDIX A
Proof of Lemma 3. Following Newman [10], we define

3, pn =19, @)

,hmf';,f - 16 =TI =

] Wc shall in this appendix, where no confusion can arise, write F(x) for the Fourier series
of F(r), with x = e2™*, If now functions g,(x), g3(x), G,(x), G4(x) are defined by

1092(x)f5(X) = — Z {1+( 113)}P5(n)x +11%x 25f ('), W

14{059+ 00N = = 3 {1+( >}p7(n)x P3G,
L 46)

{112 4+10G,(x)} f3(x') = i ps(11n+25)x",
n=-2

Go(—1/110) = 11%g,@), Ga(—~1/117) = 11%5(). @1)

i Lo R ,
By examination of the actual expansions in Table 1 we see that in fact G,(7), G5(1) e S® and
g4(1), g3(r)e S®. We define next

:i . B(z) = G(t)g ()~ 12. (48)
ngs to S, has a simple pole residue 1 at == 0 and 7 = ioo, and satisfies

ti ‘ B(x) = B(~1/117). | (49)

be : Since G3(‘t)g3(t) has the same propertles, it follows that

er
3 G1(1)g3(x) = B(t)+constant = B(z)+11. . (50)

o{'c_lcﬁne
Gy(r) = GH1)—11G5(1), g4(0) = 93()—95(1);

(1) = G,(®Ga(r), 9e(7) = 92(D9a(D), (51
Gs(t) = (@217, gs(x) = n'* (D)2 (@)-
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That Gs(7)eS°, gs(t)e S® follows from Newman [10, (2,3,3)]. We have
Ga(—1/117) = 11%g,(v),
Ge(—1/117) = llséﬁ(t),
G5(—1/117) = 11%g4(x).

Since G5(7)—G,(1)G;(7) +11G (1) has a pole of order m=< 1 at 7 = ico, and is zero at t -.c
it must be zero, since I'y(11) has genus 1. Hence

G() = Go()Gs(®) - 164D @

We use this technique to derive the multiplication tables in Appendix B. g

Next, we define inductively for n = 7, ' 3
G(7) = G s()Gs(1),  gu(t) = Go-s(D)g5(D)- € |

These results, together with the initial expansions in Table 1, establish the whole of Le
3 except for the assertions that the FS of G,(7), g,(r) have integral coefficients (they clear
have rational coefficients from (46)). These can be proved in various ways, of which we cho )
the following. The functions «(t), B(z) of Fine [11, (3.20)], clearly have integral coeﬂimen
and belong to S°. We thus can conclude that

Go(D) =), Gs(r) = f(x)—3(2), @
so that G,(1), G5(1), and hence G,(1), G¢(1), have integral FS. It is also clear that Gj(

and gs(t) have integral FS. Now g
92(1) = g5(1)G (), 93(7) =g5(v)G(7), (*

so that g,(7), g3(1), and hence g 4(7), g¢(7) have integral FS. The result for all # now follo;
from the definition (54). ¥

APPENDIX B
Fourier Series Expansions
Table 1
With
x=e" and F(1)= ), ax,
r=N
we write

F(t) = xM(oty, Oy r1s Cyeas o)



G,(x) = x"2(1,2, —12,5,8, 1,7,

Go(r) = x~5(1, —12, 54, —

Gn+5 = GnGS (n = 2),

Ga(~1/117) = 11%9,(2),
Ga(~1/117) = 11°g5(2),
Gy(~1/117) = 11* (0,
Gs(~1/111) = 11%g5(z),
Go(~1/117) = 11°9(2),

BG, =112+ G;,

BG, = 11G;— G3+G4, '
BG, = 11G3+Gs,

BGs = —12G5+Gs,
BG¢ = 112G, +11G5+G;

g(7) = x*(1, 19, 191, 1400, 8373, 43277, 199982, 844734, . ),

Gi(r) = x73(1, =3, =5, 24, —13, =22, 13,
Gi(1) =x"*(, —7,13,17, —84, 57,93, —81, —63,..),
88, —99, 540, —418, —648, 594, ...), /7_,__...»—-—— .%;

G(d) = x~5(1, —5, —13, 132, —233, —305, 1404,

—11, 10, =12, ..),

-5, 51,.

) : :{

26 -

—910, —1533,...). 57

Table 2
G, = G—11G;, ga=93—93
Gs= G;,G,—11Gy, 11g5s = g293—94»
G = G,Gy, de = G294

gnts = gnds (n g 2)‘

Table 3

G,(1) =x"2+...,
Gi(1) =x"3+...,
G (1) =x"*+...,
Gi(1) =x" +...,
Ge() =x"%+...,

g,(0) =x+...,

ga(7) = x* 4.0,
g.(1) =x>+...,
gs(v) =x>+...,
ge(1) =x*+....

Table 4

Bg, =1+11g;,
Bgs=9g,—93+1194
Bg4=93+11295a
Bgs= —12g95+ge
Bge=gas+1lgs+11%g5.

o A 2
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B(r) = x"(1, ’5 17, 46, 116, 252, 533, 1034, 1961, ...), ge"“y 329 =M 1586.5
~ g,(0) = x(1, 5, 19, 63, 185, 502, 1270, 3046, 6968, 15335, . 2, '%276 MISe. S
g3(x) = x*(1, 9, 49, 214, 800, 2685, 8274, 23829, 64843, . ), ;177 NITTPS-S
= x3(1, 14, 102, 561, 2563, 10285, 37349, 125290, . "'?
94(7') X ( ): ’ ‘-4 v \’E »t, '-( :
g5(x) = x3(1, 12, 90, 520, 2535, 10908, 42614, 153960, . BN |
==




30 o A. O. L. ATKIN
Multiplication Table 5
G, G, G, Gs
G| 11G3+G,4 | 11G,+G; G 112G5+12G7+G8
G3 —G5+G6 11G5+G7 11G7+1163+G9
G, G;+Gy 11G8+12G9-|_-Gw
G 112Gy +11G, 4 +12Gy, +G,,
Goys = G,Gs

v Multiplication Table 6
92 K] 94 : 9gs 96 ik

G, | B+12 1+11g, g2+1l1g, 194 gs+1294+fi,fgs
Gs| G, +11 B+11 1+11g, 93 92"'1193‘*'“!;?;;
G,| G3+G, Gy +11 B+12 92 | 1+12g,+11g;-
Gs| G, G, G, 1 B+12 \%
Ge| GsF12G,+11G; | G4+11G3+11G, | G4 +12G,+112 | B+12 (B+12*

Tables 7 and 8 give the actual computed values of n(y,,) and 7(5,,) in

Ugn(1) = X1mg:(x),  U{$(0)g,(0)} = ¥5,,9,().

The calculations were performed modulo 11 '%, and T stands for ““ > 10,

Table 1. 7(y.)
3456 7 8

r=2 9 10
n=2(12 3 55 17 9 8 T—[
3/13355778 T
4112356 6 78 T
511 23 456 78 T
6112 4546 78 T
711 2 2 4 46 8 8 T
8(1 12 4 46 78 T
91012 4 46 7 8 T
10012466 7 8 T
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Table 8. n(5,,)

r=2 3456 7 8 9 10
n=2 122 447 179 T
3111 25 46 7 8 T
4101 2 4 46 78 T
5001 24 46 78 T
6|0 13 456 78 T
7101 2 4 46 88 T

8 |- 12446 79 T
91- 12 4 46 78 T

10 (- 123 46 79 T

Table 9

-"' ~ This tabié shows the relation of the notations of Lehner [6, 7], Fine [11], and Atkiﬁ and
- Hussain [12] to that of this paper.

Lehner Fine Atkin and Hussian

B(z) | A(x)—11
92(v) | C(z)

93(%) | D(r)—-C(z) ' -
¢() | () u”(117) |
Gy(1) o(7) —21-13

G4(7) B(D)=3a(z) | —u+61+16
Gs(v)| - v(7)
L(7) | L(z; 117)

APPENDIX C

i = v}
Mef Lemma 12, The modular equation of degree 11 in ®(z/1 1) with coefficients in
$  given by Fine [11, (3.21)]. If we subject this to the transformation 7 — —1 /117, and

> that ®(—1/1217) = 11¢(7), we obtain in our notation (the argument 7 being omitted
brevity)




&

gl

Now ¢ =gs (modl11l) and hence _ Py
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gs = d(1+11g,+22g;+119,)— ¢*(11+99g, +88g3—11g,) + ¢>(55+4. 11292+2 11 gv)

—$H (112412, 1129, +2.112g,) — p5(112 —2. 18%g,) + $5(113~2.. 11%g,) %

—11%7—11%% + 5. 11%¢° = 11510+ 115p11, 5

Thus considering FS (mod 112) we have % :

g5 = §(1+11g,+225+11g,) — $*(11+99g,+88g, — 115,)+55¢> (mod 112). (5

¢ =95s—11(g97+29s+9o—g10+2912+3913+g1a+59,5) (mod11?)
=gs—11E, say.

Tk AN
o iy

Hence »

0=¢l= Gs(1—11G;E)™" = G5(1+11GsE) (mod 112), (©

so that, by Table 6, f;
® = Gs+11(G4+2G3+ Gy~ 1+29,+3gs+94+5g5) (mod 112), )

which is Lemma 12,
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