Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
A003408
a(n) = binomial(3n+6, n).
(Formerly M4643)
10
1, 9, 66, 455, 3060, 20349, 134596, 888030, 5852925, 38567100, 254186856, 1676056044, 11058116888, 73006209045, 482320623240, 3188675231420, 21094923659355, 139646485582065, 925029565741050, 6131164307078475, 40661170824914640, 269807672771096460
OFFSET
0,2
COMMENTS
Number of connected graphs without crossing edges on n+3 nodes on a circle and having exactly 1 interior face. - Emeric Deutsch, Nov 06 2001
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
C. Domb and A. J. Barrett, Enumeration of ladder graphs, Discrete Math. 9 (1974), 341-358.
C. Domb & A. J. Barrett, Enumeration of ladder graphs, Discrete Math. 9 (1974), 341-358. (Annotated scanned copy)
C. Domb & A. J. Barrett, Notes on Table 2 in "Enumeration of ladder graphs", Discrete Math. 9 (1974), 55. (Annotated scanned copy)
FORMULA
a(n) = Sum_{k=0..n} binomial(2*n+k+5,k). - Arkadiusz Wesolowski, Apr 02 2012
2*n*(n+3)*(2*n+5)*a(n) - 3*(3*n+5)*(3*n+4)*(n+2)*a(n-1) = 0. - R. J. Mathar, Feb 05 2013
From Karol A. Penson, Feb 28 2024. (Start)
O.g.f.(z) = hypergeometric3F2([7/3, 8/3, 3], [7/2, 4], (27*z)/4).
O.g.f.(z) = g satisfies the algebraic equation: 1 + (-15*z^2+9*z-1)*g + (27*z-4)*z^3*g^2 + (27*z-4)*z^6*g^3 = 0.
a(n) is not a positive definite sequence, i.e. it cannot be represented as the n-th power moment of a positive weight function. (End)
EXAMPLE
a(0)=1 because among the 4 non-crossing connected graphs on 3 nodes on a circle only the triangle has exactly 1 interior face.
MAPLE
a:=n->sum(binomial(2*n-2, n+j)*binomial(n-1, n-j), j=0..n): seq(a(n), n=3..22); # Zerinvary Lajos, Jan 29 2007
R := RootOf(x-t*(t-1)^2, t); ogf := series(1/((1-3*R)*(1-R)^6), x=0, 20); # Mark van Hoeij, Nov 08 2011
MATHEMATICA
Table[Binomial[3*n + 6, n], {n, 0, 20}] (* Arkadiusz Wesolowski, Apr 02 2012 *)
CROSSREFS
Sequence in context: A051375 A081902 A002695 * A037698 A037607 A055148
KEYWORD
nonn,easy
EXTENSIONS
Formula found by Simon Plouffe
More terms from James A. Sellers, Aug 21 2000
STATUS
approved