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For a long time primes have attracted the attention of mathematicians,
especially those primes that possess some sort of symmetry. The mysterious
and inconceivable repunits

An = 111 . . . 1(n),

whose decimal representation contains only units, form an important class of
them1. For a repunit An to be prime, the number n of digits in its decimal
representation must be also prime. But this condition is far from being
sufficient: for instance, A3 = 111 = 3 · 37 and A5 = 11111 = 41 · 271. Some
repunits are nonetheless prime: A2, A19, A23, A317 and possibly A1031, give
the examples. The question of primeness of repunits was discussed by M.
Gardner [1] and later in [2-4]. It is completely unclear whether the number
of prime repunits is finite or infinite.

The prime repunits are examples of integers which are prime and remain
prime after an arbitrary permutation of their decimal digits. Integers with
this property are called either permutable primes according to H.-E. Richert
[5], who introduced them some 40 years ago, or absolute primes according
to T.N. Bhagava and P.H. Doyle [6], and A.W.Johnson [7]. The intent of
this note is to give a short proof, which does not require significant num-
ber crunching, of all known facts referring to absolute primes different from
repunits.

Analyzing the table of primes which are less than 103, we find 21 absolute
primes different form the repunit 11:

2, 3, 5, 7, 13, 17, 31, 37, 71, 73, 79, 97, 113, 131, 199, 311, 337, 373, 733, 919, 991.

1By a subscript in brackets we will indicate the number of digits in the decimal repre-
sentation of the integer.
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The first observation is easy to get:

Lemma 1: A multidigit absolute prime contains in its decimal represen-
tations only the four digits 1, 3, 7, 9.

Proof: If any of the digits 0, 2, 4, 5, 6, 8 appear in the representation of
an integer, then by shifting this digit to the units place we get a multiple of
2 or a multiple of 5.

Now we can confine the area of the search, and this helps us to proceed
with the following deliberations.

Lemma 2: An absolute prime does not contain in its decimal represen-
tation all of the digits 1, 3, 7, 9 simultaneously.

Proof: Let N be a number with all of the digits 1, 3, 7, 9 in its decimal
representation. Let us shift these four digits to the rightmost four places, to
obtain an integer

N0 = c1 . . . cn−47931 = L · 105 + 7931,

where the notation a1 . . . an is used to denote the number a110n−1+a210n−2+
. . . + an−110 + an, which decimal representation consists of digits a1, . . . , an.
The integers K0 = 7931, K1 = 1793, K2 = 9137, K3 = 7913, K4 = 7193,
K5 = 1937, K6 = 7139 have different remainders on dividing by 7 since
Ki ≡ i (mod 7). The seven integers Ni = L · 105 + Ki for i = 0, 1, 2, 3, 4, 5, 6
also have different remainders on dividing by 7. Therefore one of them is a
multiple of 7. Since these integers can be obtained from N by a permutation
of digits, N is not an absolute prime.

Lemma 3: No absolute prime contains in its decimal representation three
digits a and two digits b simultaneously, provided a 6= b.

Proof: Suppose that an integer N contains digits a, a, a, b, b in its decimal
representation. By a permutation of digits of N , we can obtain integers

Ni,j = c1 . . . cn−5aaaaa + (b− a)(10i + 10j),

where 4 ≥ i > j ≥ 0. Since the integers 104 +101, 103 +102, 103 +101, 102 +
100, 101 + 100, 104 + 100, 104 + 102 yield different remainders on dividing by
7, which are respectively 0, 1, 2, 3, 4, 5, 6, so do the integers (b−a)(10i +10j),
when 4 ≥ i > j ≥ 0. Therefore among the integers Ni,j there exists one that
is a multiple of 7.
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Using these two lemmas we are able by direct calculation (preferably on
a computer) to prove that no n-digit absolute primes exist with n = 4, 5, 6.
For example, if n = 6, we have to check all the numbers

aaaaab, aaaabc, aabbcc,

where a, b, c ∈ {1, 3, 7, 9}.
Lemma 4: If N = c1 . . . cn−6aaaaab is an absolute prime, then K =

c1 . . . cn−6 is divisible by 7.
Proof: By permutations of the last 6 digits of N we can obtain the

integers
Ni = K · 106 + a ·A6 + (b− a)10i

for 0 ≤ i ≤ 5. Since b−a is even and the powers 10i, 0 ≤ i ≤ 5, have different
nonzero remainders on dividing by 7:

100 ≡ 1, 101 ≡ 3, 102 ≡ 2, 103 ≡ 6, 104 ≡ 4, 105 ≡ 5,

the integers (b− a)10i have the same property. If the integer K · 106 + a ·A6

had a nonzero remainder on dividing by 7, we would find an integer (b−a)10i,
which has the opposite remainder, and get Ni which is divisible by 7. Since
this is impossible, the number K ·106 +a ·A6 is a multiple of 7. Moreover, as
A6 = 100+101+102+103+104+105 ≡ 1+3+2+6+4+5 = 21 ≡ 0 (mod 7),
we conclude that K · 106 and hence K, is divisible by 7.

Theorem 1: Every multidigit absolute prime integer N is either a re-
punit, or can be obtained by a permutations of digits from the integer

Bn(a, b) = aaa . . . ab(n) = a ·An + (b− a),

where a and b are different digits from the set {1, 3, 7, 9}.
Proof: Let n be the number of digits of N . We can suppose that n > 6.

By the first three lemmas N is written by the digits 1, 3, 7, 9 only but it does
not contain in its decimal representation all of the digits 1, 3, 7, 9, and it can
contain three such digits only if N is a permutation of digits of the number
aaa . . . abc(n). Let us show that this is impossible. Since N is an absolute
prime, the integers

N1 = a . . . acaaaaab(n), N2 = a . . . abaaaaac(n),
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are also absolute primes, and by Lemma 4 the integers a . . . ac(n−6) and
a . . . ab(n−6) are both divisible by 7. Thus their difference, whose absolute
value is |b− c|, is also divisible by 7, which is impossible.

Therefore either N is a repunit or else it is written by two digits only. In
the latter case we need Lemma 3 again, to secure that one digit appears only
once.

The prime number 7 played a significant role in the preceding consider-
ations. But other useful primes also exist and we are going to find some
of them. Note that the property of 7 most useful for us was the fact that
the powers 10i, 0 < i < 6, had different nonzero remainders on dividing by
7. In general, by Fermat’s Little Theorem for every prime p > 5, we have
10p−1 ≡ 1 (mod p).

Let h(p) be the least possible positive integer such that 10h(p) ≡ 1 (mod p).
It is obvious that h(p) is a divisor of p − 1 and that 10q ≡ 1 (mod p) im-
plies that q is divisible by h(p). It is also easy to see that the powers 10j,
0 < j < p − 1, have different nonzero remainders on dividing by p as soon
as h(p) = p − 1. When this is the case, 10 is said to be a primitive root
modulo p.

Note that 10 is a primitive root modulo primes 17, 19, 23, 29 (the reader
again may write a computer program to check that), but 10 is not a primitive
root modulo 13 since 106 ≡ 1 (mod 13).

Lemma 5: Let An be a repunit and p > 3 is a prime. Then An ≡
0 (mod p) if and only if n ≡ 0 (mod h(p)).

Proof: As 10n = 9 · An + 1, we have An ≡ 0 (mod p) if and only if
10n ≡ 1 (mod p) and this is equivalent to n ≡ 0 (mod h(p)).

This simple assertion gives information about divisors of the repunits:
in particular, if n is prime and An = p1p2 . . . ps is the factorization of An

into prime factors, then h(p1) = h(p2) = . . . = h(ps) = n. For instance,
A7 = 239 · 4649 and h(239) = h(4649) = 7.

Lemma 6: Let Bn(a, b) be an absolute prime, p be a prime such that
n > p − 1. Suppose that 10 is a primitive root modulo p, and a and p are
relatively prime. Then n is a multiple of p− 1.

Proof: Let us consider the integers

Bi = a · 10p−1 · An−p+1 + a · Ap−1 + (b− a) · 10i, 0 ≤ i ≤ p− 2,
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obtained from Bn(a, b) by a permutation of the last p− 1 digits. The powers
10i, 0 ≤ i ≤ p − 2, yield all nonzero remainders on dividing by p, so do
the integers (b − a) · 10i, 0 ≤ i ≤ p − 2, and hence all the integers Bi can
be simultaneously prime only in the case when the integer L = a · 10p−1 ·
An−p+1 +a ·Ap−1 is divisible by p. But then, since GCD(a · 10p−1, p) = 1 and
Ap−1 ≡ 0 (mod p), it follows that An−p+1 is divisible by p and by Lemma 5
n is divisible by p− 1.

Lemma 7: The integers Bn(a, b), a 6= b, are not absolutely prime for
7 ≤ n ≤ 16.

Proof: If a 6= 7, it follows from Lemma 6, applied for p = 7, that
we need to verify the integers Bn(a, b) with n = 12 only, whereas the case
a = 7 requires a little bit more work. Direct calculations (or the use of a
computer) here seem to be unavoidable. These calculations show that the
integers Bn(7, b) are either multiples of 3, or else by a permutation of digits
they can be converted into multiples of 17 or 19.

Theorem 2: Let N be an absolute prime, different from repunits, that
contains n > 3 digits in its decimal representation. Then n is a multiple of
11088.

Proof: According to the previous lemma we assume that n > 16. Since
10 is a primitive root modulo 17, Lemma 6 yields that n divides 16 and hence
n ≥ 32. We can repeat this argument three times, using the primes 19, 23,
29, to obtain that n is a multiple of 18, 22 and 28, respectively. Therefore n
divides LCM(16, 18, 22, 28) = 11088.

Richert [5] used in addition the primes 47, 59, 61, 97, 167, 179, 263, 383,
503, 863, 887, 983 to show that the number n of digits of the absolute prime
number Bn(a, b) is divisible by 321, 653, 308, 662, 329, 838, 581, 993, 760. He
also mentioned, that by using the tables of primes and their primitive roots
up to 105, it is possible to show that n > 6 · 10175.

Let us discuss now what pairs (a, b) can appear in a decimal representation
of an absolute prime Bn(a, b) with n > 3 (if it exists at all!).

Theorem 3: If for n > 3 the integer Bn(a, b) is an absolute prime, then
(a, b) 6= (9, 7), (9, 1), (1, 7), (7, 1), (3, 9), (9, 3).

Proof: Let us write down the following equality

9An − 2 · 10r = 10n − 1− 2 · 10r = 10n + 1− 2(10r + 1).
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We know from Theorem 2 that n must be even. Write n = 2m · u, where
u is odd. Then for r = 2m the integer 10n + 1 is divisible by 10r + 1, and
the integer 9An − 2 · 10r is composite. But this integer can be obtained by a
permutation of digits of Bn(9, 7).

Furthermore,

Bn(9, 1) = 9An − 8 = 10n − 9 = (10n/2 − 3)(10n/2 + 3),

and this number is also composite.
Finally, since n by Theorem 2 is divisible by 3, the sums of the digits

of Bn(1, 7) and Bn(7, 1) are also divisible by 3. Hence these numbers are
composite as well as Bn(9, 3) and Bn(3, 9).
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