s

which relates changes in Z, to mesh impedance changes and mesh currents

= two conjugate networks. The proof is completed most simply by

ksing meshes such that only one independent mesh current flows
through the variable element Z™, Equation (13) then becomes

13520 = [ §Zmfn) (14)
which gives the required extension of Vratsanos’ theorem,
0Zo/0Z = [™f@r /)2, (15)

The trivial case where the terminals of Z™ are not both connected is
also covered by (15) since the element current is zero. If the two-port
obtained by removing Z™ is reciprocal

"™ = m° (16)
and Vratsanos’ theorem (1) is recovered. That the element currents of the
two conjugate networks are involved symmetrically in (15) is not surprising
in view of (7), which says that Z, and hence the dependence of Z, on Z®,
.are the same for both networks.

!

l. WiLLiaM E. SMITH

4 Dep. Appl. Math.
Univ. New South Wales
Sydney, Australia 2033
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On Biquadratic Impedances with Two Reactive Elements

Cambridge, Mass:

The paper by Foster [1] has rekindled considerable interest in the
synthesis of biquadratic impedance functions with the least number of
elements (see [2], and references). The difficulty of the problem has forced
most authors to adopt a “‘census” approach. The networks realizing bi-
quadratic impedance functions are divided into subclasses according to
the total number of RLC elements and/or the number of reactive elements.
Realizability conditions for each subclass are then investigated. In this
correspondence, we point out that one subclass of networks, widely be-
lieved to be completely settled, actually has the status of an unsolved
problem, and therefore requires further research.

In a recent article by Vasiliu [2], we read the following statement, *“The
impedance of any network consisting of four resistors and two reactive
elements is always realizable by a two-reactive five-element network [1].”
Now, in this statement, if “‘any network’’ means ‘“‘any series-parallel net-
work,” then the statement is true. However, a proof'is not to be found in its
quoted reference [1]. In fact, for series parallel networks, the statement is
true even if there are more than four resistors. A rigorous proof may be
found in [3].

On the other hand, if “any network’” means “any network, whether
series-parallel or not,” then the validity of the statement has never been
established in published literature [5]. The popular belief that the state-
ment is true for nonseries-parallel networks probably stems from one sen-
tence in [1], “In addition, it may be pointed out that nothing is gained by
adding resistors in excess of the three called for in the original census.”

This turns out to be quite difficult to prove. The census approach is no

1ger applicable since the number of resistors can be any positive integer.
 level of difficulty of the problem, as well as one possible approach to
1ts solution, has been expressed by Auth in the conclusion of his paper [4].

Manuscript received April 23, 1970; revised June 18, 1970.
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To conclude, we restate the conjecture with the hope oaf stimulating
further research and obtaining an answer.

Conjecture: the impedance function of any one-port network consist-
ing of one capacitance, one inductance, and any number of resistances, is
always realizable with at most one capacitance, one inductance, and three
resistances.

—

P. M. Lin
Sch. Elec. Eng.
Purdue Univ.
Lafayette, Ind.

REFERENCES

(1] R. M. Foster, **Academic and theoretical aspects of circuit theory,” Proc. IRE, vol. 50,
May 1962, pp. 866-871.

[2] C. G. Vasiliu, “‘Series-parallel six-element synthesis of the biquadratic impedances,”
1EEE Trans. Circuit Theory (Corresp.), vol. CT-17, Feb. 1970, pp. 115-121.

[3]1 P. M. Lin, ““A theorem on «.quivalent one-port networks,” IEEE Trans. Circuit Theory
(Corresp.), vol. CT-12, Dec. 1965, pp. 619-621.

[4] L. V. Auth, Jr.,, “R”.C t juadratic driving-point synthesis using the resistive three-
port,” JE 7E Tra: Theory, vol. CT-11, Mar. 1964, pp. 82-88.

[5] R. M. Fc¢ er, pri wnication, 1964,

On the Biplanar Crossing Number

Abstract—In the design of printed and integrated circuits it is de-
sirable to minimize the number of jumpers and via-holes. Linear graph
theory provides apparatus useful in the formal specification and solu-
tion of this problem.

Prior work has concentrated on the drawing of graphs in a single
plane. This correspondence, however, is concerned with determining
the minimum number of crossings for two subgraphs of a graph whose
union is the entire graph. The two subgraphs correspond to the two
sides of a printed circuit board or to two layers of metalization on an
integrated circuit. An upper bound on this crossing number and a
model yielding this bound have been found for complete graphs.

I. INTRODUCTION

A major problem in computer-aided design of printed and integrated
circuits is to place the component interconnections so as to minimize the
number of crossings and hence reduce the number of via-holes or jumpers.
Formally replacing the components by vertices and the connections by
edges transforms a printed circuit to a linear graph. The graph problem is
to find a drawing of the graph in a chosen surface so that the edges have
the fewest possible number of crossings. The contributions of graph theory
to the crossing minimization problem may be divided into stages. The first
stage is to determine whether or not a graph can be drawn in the plane
without crossings, i.e., whether or not the graph is planar. Kuratowski [1]
in 1937 showed that a graph is planar if and only if it does not contain a sub-
graph homeomorphic to either K, the complete graph on five vertices, or
to K, 3, the complete bipartite graph. Two graphs are homeomorphic if
they differ only by vertices of incidence two. Fig. 1 shows two graphs
homeomorphic to K.

MacLane [2] showed that a graph is planar if and only if it contains a
complete set of cycles such that no edge is in more than two of the cycles.
Several investigations have given computerizable algorithms which test
graphs for planarity. For examples, see Goldstein [3], Tutte [4], Dunn and
Chan [5], Fisher and Wing [6], and Lempel et al. [7].

The second stage is to determine the thickness ¢ or the fewest number of
planar subgraphs whose union is the whole graph. Given ¢ and the sub-
graphs, it is possible to construct the corresponding printed circuit on ¢
layers without crossings. For early graph results in this stage, see Beineke
etal. [8], [9] and Ringel [10].

The third stage is to draw the graph G in exactly one plane so that the
edges have the fewest number Cr, (G) of crossings. Conjectures for Cry(K,)
and Cr,(K,,,) can be found in Guy [11], [12] and Zarankiewicz [13],

Manuscript received September 12, 1969; revised July 20, 1970. This research was sup-
ported by the U. S. Naval Research Laboratory under Project RR003-02-41-6150.
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(a)

(b)

Fig. 1. (a) K with one crossing. (b) K with three crossings.

Fig. 2. Forbidden crossings.

respectively. Lerda and Majorani [14] and Nicholson [15] have considered
the crossing problem for arbitrary graphs in the plane.

The fourth stage, considered in this correspondence, is to determine the
fewest number of edge crossings when the graph is drawn on two planes.
Since most printed circuit boards have two sides, it is clear that the most
efficient constructs of printed circuits have connections on both sides.

II. BiPLANAR MODELS

Any graph may be drawn in the plane if the edges are permitted to cross.
For example, the graph K which has five vertices with each vertex joined
to every other, may be drawn in the plane with one crossing (Fig. 1(a)) or
with three crossings (Fig. 1(b)).

In this correspondence, crossings are not permitted at vertices and no
two edges may cross more than once.' Fig. 2 shows the forbidden cross-
ings.

Guy [12] conjectures that the minimum number of crossings for any
drawing of K,, the complete graph on n vertices, in the plane is

~ 1[a)[n=1n—=2][n-3
Guxo= 35 15 B

where [x] denotes the greatest integer not exceeding x. Moreover, Zarankie-
wicz [13] conjectured that the fewest number of crossings for any drawing
in the plane of the complete bipartite graph K, , is

~ n|[mi[n—=1][m=1
Sy 8y |

! No allowances have been made for cases where the insulating properties of a compo-
nent surface allow crossings through a component (or vertex) as with thin-film RC circuits.
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I

Fig. 3. K, with two crossings.

(b)

Biplane drawing of X, with one crossing.

Fig. 4.

According to this result K 4, can be drawn in the plane with two crossings.
Fig. 3 shows such a drawing.

The complete graph on nine vertices Ko, is interesting since it is the
smallest complete graph which cannot be drawn on two planes without
crossings. Hence the printed circuit corresponding to K, cannot be im-
bedded on the two sides of one printed circuit card without via-holes.
Fig. 4 shows a biplane drawing of K, with just one crossing.

The crossing number Cr,(G) of a graph G is the fewest number of crosg
ings needed to draw the graph in the plane. The biplanar crossing number
Cr,(G) is defined as the fewest number of crossings needed in order to
draw the graph in two planes. Similarly, Cr,(G) is the n-planar crossing
number and is the fewest number of crossings for any drawing of G in
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Fig. 5. (a) Top and bottom of cylinder model for K. (b) Outside lateral surface of cylinder model for K. (c) Inside lateral surface of cylinder model for
K. (d) Outside top, bottom, and lateral surfaces of cylinder model drawn on one side of plane. (e) Inside top, bottom, and lateral surfaces of cylinder

model drawn on other side of plane.

n planes. By definition

Cry(G) = min (Cr,(H) + Cr(K))
HUK

where H and K range over the disjoint subgraphs of G whose union is G.
Thus in order to estimate Cry(K,) it is only necessary to give a model of K,
where a particular H and K are specified. A simple biplanar model for K,
is obtained by decomposing K, into three subgraphs

K2

Kzy; Kinsag g2y

The complete graphs on [/2] and {n/2} vertices form H and the complete
bipartite graph on [7/2], {n/2} vertices forms K. Here {x} denotes the least
integer not less than x. Drawing K|, ,, and K2y on one side of the plane
and K,z 12, on the other side gives a model for K, with

Cri(Kpy2) + Cri(Kpzy) + C"x(K[n/zmn,/Z))

crossings. Each of the Cr, numbers can be closely estimated by the previ-
'y given conjectures. If n is an even integer, i.e., n=2r, then

— :
Cry(K,) = Cry(K,,) < 2Cry(K,) + Cry(K,,)

=

PO o=

H el e SR H S

If the maximal complete bipartite subgraphs of a graph are known, then
this decomposition technique yields a quick estimate to the biplanar cross-
ing number.

A closer upper bound for Cry(K,) is obtained from the following model
illustrated in Fig. 5 for Ky which includes a model given by Blazek and
Koman [16] for the planar crossing number. Suppose n is an even integer.
Place the vertices of the graph K, ,, the complete graph on n/2 vertices, on a
circle and place the edges of K, inside the circle of either side of the plane
S0 as to obtain the fewest number of crossings. This can be done with

r1(K;2) crossings by use of the following model (see [16]). Let the vertices
of the graph v,, - -, u(I=n/2) be the I vertices of a regular /-sided convex
polygon. Construct two sets of edges for K;. The first set consists of all
diagonals paralled to UimiVisy fori=1,2, -, [4n+3)} and to U4 for
i=1,2,--+, [i{{n+1)]. The second set consists of the remaining diagonals.
This second set is mapped stereographically onto the exterior of the
polygon. This model of K,(I=n/2) has a Hamiltonian path whose edges

have no crossings and whose total number of crossings equals Cr (K,2).
In this model identify the Hamiltonian path with the boundary of the circle
and identify the interior and exterior with the two sides of the plane interior
to the circle. Fix copies of this particular drawing of K,;; to the top and
bottom of a cylinder so that the top vertices line up with the bottom vertices.
On the sides of the cylinder run counterclockwise geodesics from each of the
n/2 top vertices to the n/2 bottom vertices always placing the first [n/4]
edges from each vertex on the outside surface and the remaining on the
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TABLE 1

13 14

155 LG E SN

i EARIE L il

6 7
e i O TS NI R o 53 75 100 152
3 9 18 36 60 100 150 225 315 441 588 784

2 inside surface. If n is odd, do the preceding construction for (n+ 1) and then

remove one vertex and all the edges abutting on it.
The number of crossings obtained on the sides of the cylinder is equal to

i AT

when n = 4k
384
=) ks -6
n(n ._2)('1,—4_)(,"- _) whenn = 4k + 2
384
-— - 2 p—
("_ lln _3)2 5)~ when n = 4k + 1
384
AN = T
{n il)(_n _:E) (1 _)A, when n = 4k + 3
384

Adding to these the number of crossings rom the top and bottom, i.e.,
2Cr(K,2) gives

&(5;1)(_’( -_2)(7.’(—_3) . when n = 4k

6
p— 2 a— -—

u7£77 3}779, when n = 4k + 2
6

(1 , 4

E(fiﬂg'g)fi,l whenn = 4k + 1

2(k —

ki_—l)nk +744), when n = 4k + 3.

6

Denote by Cry(K,) the number of crossings in’ this model. Now Cry(K,)
< Cr,(K,) since Cr,(K,) is the fewest number of crossings obtained from
all decompositions of K. Equality does not hold since C,(Kg)=1 and
Cr,(Ky)=4. However, Table I shows the improvement of Cry(K,) over
Cr,(K,), the conjectured value for Cry(K,).

ALVIN OWENS
Math, Info. Sci. Div.
Washington, D. C. 20390
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Number of Spanning Trees in a Wheel

Abstract—A recurrence relation for the number of spanning trees
f(n) in the wheel W,, where n>3, is obtained as f(n+1)—Ff(n)=Lsns1.
where f(3)=16 and where L, is the kth number in the Lucas series
1,34, 7. . L, . where L,=Ly.y Ly, for k>1. Alternately, f(n)
=1%-44 where 5=0 for n odd and 1 for n even, thus confirming f(n)
as a square number for n odd and serving to verify a previous finding
in 1969 by Sedlacek that f(n)=((3+\/§)"+(3—\/3)‘)lr—2.

INTRODUCTION

The wheel W, of order n, where n=> 3, is defined by its inventor Tutte [1]
as the graph obtained from an n-gon P, by adjoining one new vertex handn
new links joining h to the n vertices of P,. P, is called the rim and 4 the hub
of W,. The edges incident with h are the spokes. In this correspondence,
W, is labeled so that the spoke s; is incident with the vertex v; in P, and the
edge r; in P, is incident with the vertices v;, vy, i=1,2," ", (D, 1 20))
The labeled wheel of order 6 is shown in Fig. 1.

The wheel W, represents an important class in both the theory and
application of planar graphs. One such application is Benedict’s study of
self-dual electric networks [2], concerned in part with self-dual graphs each
graph G of which has ¢(G) spanning trees, where ¢(G) is a perfect square.
In their pioneering work on self-dual graphs, Smith and Tutte [3], [4] re-
vealed that self-dual graphs obtained by reflection in the center of the
sphere have this property, and that W,, n odd, is a special case of these 51
Benedict [6] in turn suggested that it might therefore be interestin;b)
derive c(W,)=f(n) for all n. The solution reported herein was duly
tained. One of the reviewers of the first draft of this article (for whose ad-
vice the author is most appreciative), however, cited a prior solution by
Sedlacek [7]. The two solutions are quite different in form, as it happens,
and are derived from quite different approaches.

SPANNING TREE ENUMERATION IN W,

Contracting the rim edge r, in ¥, to a new vertex w,, then relabeling w,
as v, and the edge s, as {,, results in the multigraph W, _, +t, when n>3,
illustrated in Fig. 2 for n=6 and in the multigraph R, +; of Fig. 3 when
n=3. By a well-known rule in tree enumeration, Seshu and Reed [8 ], the
number of spanning trees in W, is

f(n) = e(Wy-y + ) + (W, = 1
o(R, + t3) + (W5 — r3)

forn >3

o =3 (n

where W, —r, is the graph obtained on removing the rim edge r, from W,.
The number ¢(R, +t3) in (1) is &, and the graph W, —r, is isomorphic to the
terminated simple ladder L,_, of order n—1{9]. L,—, has

(L, y) = U forn>1 (2)

where u, =ty 4 | — -1, k>0, is the (k+ 1)th number in the basic Fibonacci
series
Ug, Uy, Uas "7

R O T L e 3)

Thus, in (1)

(W, — r,) = Uz forn = 3. (4)
For example, there are 144 spanning trees in We —re. !
The number c(W, ., +1,), n>3, in (1) is given by

(Wy—y + 1) = c(Wy—y) + c(Qn-3) (5)

Manuscript received April 14, 1970; revised July 9, 1970.
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Fig. 2. w, 1w,

Fig.3. R, +1,.

Fig.4. Q,.

where Q,_; is the multigraph which results on contracting the spoke s,
in W,_, to a new vertex X, then relabeling the edges ry, r,_, as q,, Gou'ns
respectively, and where oW, )= f(n—1). As illustrated by @, in Fig. 4,

Q.- 3 is isomorphic to a multiply-terminated simple ladder of order n-3,

the subgraph @, _ 3~ 4s-1—q, being isomorphic to L,_;. Thus [9]

dQy-3) = Han-2-

For example, there are 55 trees in Q.

TABLE I LH Stgl p

n Jiln) f>(n) fln—1) Sn)
3 4 4 16
4 5 9 16 45
5 11 11 45 121
6 16 20 121 320
7 29 29 320 841
8 45 49 841 2205
9 76 76 2205 5776
10 121 125 5776 15125

Equations (1) and (4)6) combine to yield the recurrence relation

S+ 1)~ fin) = Uiy + Uy, forn>3

J(3) =16 (7
for the number of spanning trees in W, Since Uan+2+ Uy, Is the (2n+ 1)th
number in the Lucas series [10] 1, 3, 4, 7,50+, Ly, -+, where Ly=L,,,
=L_\, fork>1,

T+ 1) =fimeL, .y
J3) = 16. (8)

The values of f(n — 1) and f(n) for n=3,4,--- 10, excluding f(2), are
listed in Table 1.
It is observed that

fn) =L} — 45 ©)

where 6=0 for 1 0dd, 1 for n even; which confirms the known fact [3]-[5]
that the number of spanning trees in an odd wheel is a perfect square. It is
apparent from (9) that S(n) is the product of two numbers

S(n) = fi(n)fy(n) (10)
where

Siln) =L, — 2u,
faln) = L, + 24,

These factors are included in Table I. From the Lucas number identity [10]
L5 =L, + 2(—1y (11)

it follows immediately from (9) that
J(n) = Ly, + 2(—1y — 45 (12)

where §=0, [ according as n is odd, even.
Sedlacek’s [7] prior solution for f(n), obtained from the determinantal
formula for W, is

fn) = <‘3 +2‘/§)" + (};7\@) =t} (13)

The equality of (9) and (13) establishes the interesting Lucas numerical
number identity

B T (3:2\‘5> + (? %ig) +45 (14)

(0=0,1 according as n is odd, even).
BasiL R. MyERrs
Dep. Elec. Eng.
Univ. Notre Dame
Notre Dame, Ind.
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Comments on “Topological Formulas for
General Linear Networks”

It is difficult to avoid an occasional inadvertent repetition and unac-
credited publication of prior work. Jong and Zobrist, in the above paper,’
follow, however, a most unusual path, expressly dismissing by implication
my prior work [2] as relatively uninteresting in the introduction to their
paper, whose aim is the reestablishment of these results.

Thus, Jong and Zobrist’s Section 111 on voltage-controlled sources, 4
and (5), corresponds to the “A rules” in [2] (and to lines 4 and 5 of Table I
in [3]), their Section IV-A on voltage-controlled sources corresponds to
my *‘C rules” (and to lines 2 and 3 of Table 1), and their results regarding
transformers are included in the *‘rules for transformers” [2] (and in line 11
of Table I), except that reference [2] is considerably more explicit and con-
tains, in particular, the complete topological interpretation of terms and of
their signs, further reaching results on transformers and their topological
meaning, as well as many other useful conclusions. (Reference [2] is not
explicitly concerned with gyrators.)

Topological rules can be expressed in several ways whose equivalence
is immediately evident. In the context of such rules any two configurations
are equivalent if they are composed of the same set of branches. If no trans-
formations are used on the graph representing an electrical network, the
proper configurations are “loopwoods,” which comprise k-trees and sets
of directed loops as special cases. and [2] is formulated in terms of these.
Through obvious transformations effected by merging or grounding nodes
or removing branches, a graph N can be transformed into N’ such that a
loopwood in N becomes a k-tree in N”. In fact, in my joint expository paper
[3] formulation is in terms of k-trees, as it is in the Jong and Zobrist paper.

Jong's paper on formulas for networks containing operational ampli-
. fiers [1], while referring to some of my papers on matrix analysis of net-
works [3] [5], omits to mention my topological papers which contain
these results (in rule 7 of [2] and in line 3 of Table 1 [3].) Here again the
prior work immediately yields the correct signs of terms and provides a
complete topological interpretation of terms.

AMOS NATHAN

Dep. Elec. Eng.

Univ. Rochester
Rochester, N. Y. 14627

Manuscript received June 3. 1970.
' M. T. Jong and G. W. Zobrist, I[EEE Trans. Circuit Theory, vol. CT-15, Sept. 1968,
pp. 251-259.

Reply by M. T. Jong*

In the introduction to the pa per,' the sentence, “Of particular interest
are the methods developed by Coates and Mayeda,” does not mean to im-
ply that Dr. Nathan'’s prior work (2], [31is “‘relatively uninteresting.” The
Coates—Mayeda method is explicitly mentioned, because the development
in our paper is based on it.

2 Manuscript received June 15, 1970.
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The work in our paper took a completely different approach to de-
veloping topological formulas for networks containing any type of depen-

dent sources, gyrators, and transformers (both practical and ideal). In e

employing these formulas the subnetwork consisting of the active and/or
nonreciprocal elements is separated from the passive reciprocal subnet-
work, and by segregating the vertices according to the formulas, only
k-trees of the passive subnetwork need be found. The rules in [2], [3] apply
only to voltage-constrained networks, including transformers, but not
current-controlled sources, where the admittance functions are expressed
in terms of trees, loops, and paths of the overall network graph in which
each constraint is replaced by one or more branches. In the case of ideal
transformer with floating terminals, it is replaced by six branches in lines 1
and 2 of Table 11T in [2]. Thus, the approach is different and the rules are not
the same.

This author agrees that the terms in [2], [3] can be expressed in terms
of k-trees of the passive reciprocal subnetwork through some transforma-
tions. But the results are not explicitly in terms of k-trees, as in our paper
and in [1}.

M. T. JonG
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Sensitivity Invariants for Scattering Matrices

I. INTRODUCTION

Recent papers [11-[3] have indicated renewed interest in the study of
sensitivity invariants of networks. However, none of these seems to have
treated sensitivity invariants of scattering parameters and none seems to
have considered lumped-distributed networks.

In this correspondence sensitivity invariants are derived for scattering
matrices of linear time-invariant networks n which are composed of
Jlumped resistors, inductors and capacitors, gyrators, uniform transmission

lines, uniformly distributed RC lines and either current-controlled voltage
sources or voltage-controlled current sources. On an impedance basis the
element variables are defined as follows: lumped resistors, R=1/G;, Q;
lumped inductors, L;= 1/T; H; lumped capacitors, D;=1/C; F~!; gyrators,
gyrator ratio o;= — 1/y; Q; characteristic impedances of uniform trans-
mission lines, Zg; = 1/Yp; Q; total series resistance and total shunt capaci-
tance of uniformly distributed RC lines, Rge, = 1/Gxe, @ and Dge,= 1/Cre,
F !, respectively; transfer resistances of current-controlled voltage
sources, r,{. The set of impedance-based parameters describing the
elements of the network is denoted by

= {R. Lis Dy oty Zoi Ree Dree Tmi}- (1a)
On an admittance basis one considers the dual-controlled sources, which
are voltage-controlled current sources with transfer admittance g, and
the set of elements corresponding to those in (1a) are
)‘-

{y} S {Giv rh Ci’ Tis Yoi! Gﬁp CR_C.’ gmi} (lb
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