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DEPARTMENT OF MATHEMATICS
ST. LUCIA, QUEENSLAND, AUSTRALIA, 4067

6th April 1978

NWI I X3 mbiey o g and i suws N .
Dr. N.J.A. Sloane ﬂf’-ﬁ M¢5

Mathematics Research Centre
Bell Telephone Laboratories Inc.
Murray Hill

NEW JERSEY U.S.A.

Dear Dr. Sloane,

Our Mathematics Library has recently acquired two copies
of your book, "A handbook of integer sequences'". I am currently
writing my Ph.D. thesis, and I noticed that a (combinatorial) sequence
which arises from my work is not listed in your book. It begins as

follows: :
A T
6, 10, 17, 25, 37, 51, .. - \QSOL{"E
/

——

and it arises in the following manner.

Let PU denote a 3 X 3 matrix with enfries chosen from
{0,1,2,...,u-1} , such that each row and each column of PU sums to

U , where u 1is any positive integer greater than 1. No row or
column of PU may have two zero entries, since U is not an allowed

entry of the matrix. For fixed u , I call two such matrices PU

equivalent if one can be obtained from the other by permuting rows,
permuting columns, or taking the transpose. Let n(u) be the number
of non-equivalent matrices PU . Then the above sequence is the
sequence

n(2), n(3), n(¥), ..., n(9),
T am including with this letter four pages copied from an
appendix of my thesis, which include the non-equivalent PU for small

U , and a formula for n(y) , for arbitrary W .

In your book you mention the existence of supplements; if any
are available, I would be very grateful to recelve one.

Yours sincerely

Cligopel) Moo

Elizabeth J. Morgan
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cl(l): 1356, 1378, 1u56, 1u78, 1458, 1467 and complements,
which is isomorphic to design VII via (67)(23), or

cl(2): 1358, 1367, 1h56, 1456, 1478, 1478 and complements,
which is mapped to design VIII by (142)(578),
Similarly case (c2) may be completed in two ways:

CQ(l): 1458, 1467, 1356, 1356, 1378, 1378 and complements,
which is mapped to design VIII via (1432)(5678), or

02(2): 1456, 1478, 1356, 1378, 1358, 1367 and complements,
which is a design with 38 blocks of type A and 4 of type B, design X.

This completes the proof of Theorem 3.3,8. O

We shall conclude this section with some results on
(8, 1uu, 7y, 4, 3u); X3 = p 3-designs for arbitrary u. As noted
after (3.10), there are u possible block types; a block of type
(i, 4(u-1i), 6(u+1i), 4(p-i), i-1) we shall call of type Ai’ for

1 <1 <. If we let o be the number of blocks of type Ai’ we

u

know that Z o, = 14y, and (from Lemma 3.3.5), uu is 0, 2u, 6u

i=1 '
or 1Hu, Clearly there are othar constraints on the values of the
ui; since [ﬁ] = 70, there are only 70 = 1k X 5 distinct blocks,
and since b = luu, if u > 5, we cannot have all blocks of type Al.
This clearly generalises:
LEMMA 3.3.9. If u > Sw then there exists at least 2i blocks
of typé A, where 1 > w,
Proof. If u > 5w then b = 14y > 70w and so even if each of the
70 distinct b-sets is repeated w times, there are not enough blocks.
So some block must occur 1 times where 1 > w3 that is, some block

must be of type Ai where 1 > w, Since both this block and its

complement must each occur 1 times, there are at least 21 Dblocks
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X of type A, with i >w. 0

Now we shall consider in turn the four possible values of OLU, J
and obtain all designs for the cases of the three non-zero values. J

If a“ = 14y, there is only one design; it consists of |y identical

copies of the unique (8,14,7,4,3); A3 = 1 3-design, The following

lemma deals with the case o = ou.

%} distinet (8,14u,7u,4,3W); A, = u

LEMMA 3.3.10. There are [ .

3-destgns with 6u blocks of type AH'
Proof. Without loss of generality we may take the 6u blocks of

type AU to consist of U copies each of:

1234 5678
1256 3478
1278 3456 ,
There are 8u more blocks, 2u each of: ;;’
130k 2L e 23k . . ( 3. lq,)

The asterisks must be replaced by 2u each of the pairs 57, 58, 67,
68. Also there must be | each of the 3-sets 135, 136, 137, 138,
145, 1u6, 1u7, 1us8, Suppose that the block 1357 occurs m times.
Since au = ao—l for all the possible block typés, we know that the
complement of each block must appear as a block, A simple check of

Pairs and 3-sets then shows that the blocks (3.14%) must be as follows.

Block Number of copies Complement

1357 m 2468

1358 H-m 2U67

1368 m 2457

1367 H-m 2458

1457 T 2368 :
1458 m 2367 J
1468 u=-m 2357 -')
1467 m 2358 ”
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Possible values for m are: 1, 2,00, [%J , where as usual

[n] denotes the largest integer less than or equal to n. The

value 0 for m 1is ruled out because we have assumed that there

are only ©6U blocks of type AUo Alsc we require m < [%} , for
a design with m > [%} is isomorphic to a design with m < [%q H
this can be seen by interchanging 7 and 8. So there are (%?
distinct designs with au = 6, A typical one of these has

au = 6u, o = 8m, au_m = 8(y-m) and other ¢y i# U, m, y-m,
are zero. a0

Now suppose that there are 2u blocks of type AU; let them
be | copies each of 1234 and 5678, The remaining blocks must

be 2u each of 12%% 13%% BRIELES
3t PITEISH 23

where asterisks are to be replaced by 2u each of 56, 57, 58, 67

b 3>

68, 78. Once the blocks containing 1 are determined, the
remaining blocks are also determined, since each block is
complemented, Note that if, say, 56 occurs m times with 12,
then 78 must also occur m times with 123 this follows because
if m of the blocks 12%% are 1256, then there are U-m blocks
125% and u-m blocks 126%, leaving m blocks 1278, We can

make an array denoting the possible number of blocks of each type;

the number Ny for example, means that there are a, blocks 1357:
56 57 58 67 68 78

127 my m, p-m,-m, u—ml—m2 m, my

13 ny n, u—nl—n2 H-n -1, n, ny

L S D m,+m+ ml+m2+ S S
1 1 2 2 nl+n2—u nl+n2—u 2 2 1

Let PU denote the 3 X 3 matrix
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m m2 u—ml—m2

ny n, u—nl—n2 (3.153

u—ml—nl u—mz—nz ml+m2+nl+n2—-u .

We insist that M, My, By, M, e fO,l,2,°~-,u—l}, and that no row
or column of PU contains two zero entries, or else we would have
a design with more that 2U  blocks of type AU' Note also that
permuting the rows or columns of PU or taking its transpose will
lead to an isomorphic design; so the number of non-equivalent
3-designs with au = 24 is equal to the number of non-equivalent
matrices P“, where two matrices are considered to be non-

equivalent if one cannot be obtained from the other by permuting

roews and columns or taking the transpose, For example, when U =2

110
there is only one matrix, 101 , and this corresponds to the

011 J
(8,28,1u4,4,6); Ay = 2 3-design with G, = 24 = 4 and @ = 2u, )

design III of Theorem 3.3.7. When U = 3 there are three matrices,

111 210 210
L1121 102 and |11 1| ; these correspond respectively to
111 021 012

designs VI, V and IV of Appendix E,
The following thecrem is proved in Appendix F. It gives the

number, n(p), of non-equivalent matrices Pu for arbitrary p,

THEOREM F, U=-2 [i/2] [i/2]-m
n(u) =} ) ) Simp

1=1 m=max{0,2i-u} p=0

U-2i+m+1 when mtr £ i/2 s

where c, - = .
imr U-21i+m+2 . .
T3 | whaem mir = i/2 ‘)
and 8 is given by: w =32, 39-1 op 38-2, according as °

W=0,2 or 1 (modulo 3).
(This excludes the case W = 2, but trivially n(2) = 1.) U
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Appendix I also lists the possible numbers of blocks of type

Ai’ 1 £4iZfp-l, when au = 2y, for 2 <y £ 6. We now have

the following lemma.

LEMMA 3.3.11., There are n(u) distinet (8,14u,7U,4,31); As = u

3-designs with 2u blocks of type Au. 0

In the case au = 0, with no blocks of type AU’ it seems
somewhat harder to find all the 3-designs. Alsc it
is not even clear whether each design will be uniquely determined

by the number of blocks of each type.

If there is one block of type Ar’ then there are (at least)

2r Dblocks of type Ar’ and the design must have the '"skeleton"

form as follows:

Number of blocks

r each 1234 5678 2r

123% 567% [u-r each of
P b b

L-r each 124 568 1,2,3,4,5,6, 8u-8p
134% 578 7,8 to replace
23l % 678% asterisks]
125 3y [utr each of 56,

U+r each  13%% 2y 57,58,67,68,78 to Bu+br
JRIECEE 23k replace asterisks]

14u blocks

We may assume that there are the following numbers of blocks:
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Block Number of them

1235 a,

1236 a,

1237 a,

1238 a,

12458 bl

1246 b2

1247 b3

1248 bq
I 4 4

Here Z a, = Z bi = X c.
1=1 i=1 1=1

We also take blocks as described by

’ 56 57 58 67
12 ml m2 m, Aw mu
13 nl n2 n3 1'1,+
R P2 P3 Py
Here m6 = r-u+ ml + al + bl +
Do = v -+ ny ot ay te ¢
Pg = r -y +‘pl + bl + eyt
6 6 6
and Z mi = Z ni = Z pi =
i=1 i=1 i=1

There are then several constraints,

{X,y,z} where at least one of x,

at least one to '{5,6,7,8}. For example, a count of the 3-set

{1,2,5} yields a, + bl + m o+ m,

A general result for arbitrary

and will not be attempted here,

E&g&& Number of them
1345 <,
13u6 <,
1347 Cq
1348 <,
2345 dl
2345 d2
2347 | d3
23us8 du
4
= ) di = u-r,
1=1

the following array:

68 78
s e
g g
Ps Pg -
a2 + b2,
a, + s
b2 tcys (from rows)
uto,
= U+,
= U+,

= B+ r. (From columns.)

obtained by counting 3-sets

Y>, 2 belongs to {1,2,3,4}

+ l'ﬂ3 = U

r and U seems too involved,

100

00

O

I
9



APPENDIX F

Numbers of non-equivalent matrices 51_

(See section 3.3)

u No. of matrices, n(u)

2 1

3 3

L 6

5 10

o 17

7 25

3 37

9 51

u:

Al A2 A3 ALjr AS A6

12 0 0 0 60 12

12 8 0 32 20 12
8 8 36 0 20 12
8 16 12 16 20 12

16 0 0 16 Lo 12
0 24 0 U8 0 12
) 16 36 16 0 1.2
0 40 Q 32 0 12
8 24 24 16 0 12

12 16 12 32 0 12

16 16 2u 16 0 12
2u 0 0 u8 o 12
0 0 72 0 0 12
8 16 ug 0 0 12
12 24 36 0 0 12
8 40 24 0 0 12
0 72 0 0 0 12

H<p4s

Numbers of blocks of each type:

p =2
p=3
po= b
s
225

A By
24 n
Ay By Ay
36 0 6
12 2 6
20 16 6
AL Ay Ay A,
0 u8 0 8
oy Y 0 8
12 0 36 8
16 32 0 8
16 8 24 8
12 24 12 8
AL B, Ay A, A
12 0 0 48 10
12 24 g 12 10
g oy 12 16 10
16 o 12 32 10
0o 24 36 0o 10
4 32 24 0o 10
24 0 36 0 10
16 32 12 0 10
12 24 2 o 10
12 u8 0 0o 10
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or 32%-2, according as

32-1

Let o = 3%,

= l')

but trivially n(2)

w= 2,

(This excludes the case

(modulc 3).

fi/21] [i/2]-m

=2

m=max{0,2i-u}

L
151

n(uw)

i

2

m+r #

when

U -2i+m+1

=X
5 .

%] when mtr

- 21 + m +
2

:
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Proof. The counting of possible 3 X 3 matrices depends on the

following ordering; it ensures that only non-equivalent matrices

are counted,

%11 %12 %13
Let P = a5y 35, 5g , where every row and column
a a a

sums to U, and rows and columns are arranged so that, in order,

. N <t 4 < .
(1) ajy 2 aij for 1< 1,j < 3

(ii) a5 t 2, is then to be as large as possible;
f S .
(iii) 8,1 2 819 3
. . - S
(iv) if ajp T a5gs then 8y 2 85qe
The entry a;; may equal u-1, y-2,++°, £; in other words,

a5y T u~i for 1 = 1,2,+°°,u-R. So the first column may be

u-i . 0
i-m . .| where i-m and m are both less than or equal to
m . .

u-i, and i-m > m, So 2m < i, or m < [i/2], and also
i-m £ py-i, or m > 2i-y.
Now the first row may be taken as follows:
u-i i-m-r m+r

i-m . o (F.1)

m . .
where i-m-r > m+r, or r < [i/2]-m, and also i-m-r < W-i, or

r > (2i-u)-m; since mjy 2i-y, this merely gives 1 2 0O,
It remains to find the number of choices available for the
entry ' a,, in (F.1); once this entry is determined, the whole matrix

is known, So we must verify that ST is as given in the
statement of the theorem, We claim that 3y, may take all integer

values satisfying

< - F.2
ajy S ay, S ou-lapy ran), (F.2)
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that is, o =~ (a12+ ayt
condition if 319 ° ala).
so that a32 = U - a12 -

then > u-a

12 7 %23

diti ). _
condition (i) If 215

we must let 522

%117%1

/ B:ZiggigJ values.

~

i = 2(mtr),

5 [i/2]
n(g8) = )
i=1 m=max{0,2i-8}
100 ¥ (Gpp0 T ©
(eho0 * S4o1 * ©
71 0]
ClOO = 7: 1 where
O rd
6 2 0)
C2OO =5 2 where
O P4
: (6 1 1)
CQOl = 3: 2 where
O 7
§ (6 1 1
‘ . 0210 = 3 1 where
E €
. ] 53 0]
C3OO = 3: 3 where
\0 )

13

So instead of taking u - (a

) + 1 values (with an additional
F P £ < ' <
or 1if 259 340 then a5 mte,
>u - (i-m-r) - (mt+r) =y - i =

22

but this contradicts condition (i).

YAl 12°
- > - >
Ho8og 7 Um3y5, O @1, 7 854
so that a > implies

13’

take values greater than or equal to

12+a

a,.+l values or uU-2i+m+l

Finally, note that a = a

As an example, consider

201

y

Also if a

> -
2p > M (e

or (since each row sum equals u),

H =
owever a33+a23+a13

>
833 7 10

to ensure that condition (iv) holds

a23.
217313

values, a can only take

22

12 13

=8=3x%x3-1, so & =3,

[i/2]-m
C. =
=0 imr
+ ¢ ) + (c. .+ ¢ + c ) +
210 300 T %301 * ©310
t 0t 11t Cuog) * S50
a,, = 0,1,2,3,4,5,6,
a,, = 0,1,2,3,b,
a5y = 3,4,5.
255 = 4,5,6,
a5 = 0,1,2.

31173107330

again contradicting

) + 1 different values or

implies that




C3Ol = 3: 3 where 450 = 1,2,38.

C310 T Y. 2 where a5o = 1,2,3,4,

= . = 0,
CMOO 1: b where a22

CuOl = 1: U where a22 = 1.

= . = 2,
0402 1 u where a22

410 " 2: 3 where a9 T 1,2.

Cull = 1: 3 where a22 = 3.

CMQO = 2 2 where 22

o

"
w
=
E ]

0520 = 1: 3 where a22 = 2,

Hence n(8) = 7+5+3+3+3+3+4+1+1+1+2+1+2+1 = 37,
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AT&T Bell Laboratories 600 Mountain Avenue
Murray Hill, NJ 07974-2070

908-582-3000

May 28, 1991

Professor Elizabeth J. Morgan
c/o Professor Ann Penfold Street
Mathematics Department
University of Queensland

St. Lucia QD 4067
AUSTRALIA

Dear Professor Morgan:

Thirteen years ago you sent me the sequence 1, 3, 6, 10, 17,... from your
thesis! Can you please supply me with an exact reference?

Best regards,

N. J. A. Sloane



TELEPHONE: +61 7 365 2673
X2 TELEX: UNIVQLD AA40315

FACSIMILE: +61 7 8702272

\,
7 ~' y
/ / The University of Queensland § 0 ((Cj/

DEPARTMENT OF MATHEMATICS

) OF DEPARTMENT QUEENSLAND. 4072

i V.G. HART USTRALIA

12th June 1991.

Professor N.J.A. Sloane,
AT&T Bell Laboratories,
600 Mountain Avenue,
Murray Hill,

NJ 07974-2070,

U.5.A.

Dear Professor Sloane,

Thank you for your May 928th letter, via Anne Street. The sequence 1,3,6,10,17,...
that I sent you many years ago has not really appeared in print. I gave a ten minute
talk at the 85th Annual Meeting ol the American Mathematical Society in Biloxt in
January 1979. The abstract appeared in

Notices of the AMS, Volume 26, Number 1 (January 1979, Issue 191), page A-27 (ab-
stract number 763-05-13).

[ didn’t publish the result more widely because I seem to remember that from questions
aflerwards (possibly from Frank Harary? But I hardly knew him then!) similar work
had been done by graph theorists; since this was only a sideline of my main work on
designs, I pursued the matter no further. The reference to more detail in my thesis is:
Flizabeth J. Morgan, “Construction of block designs and related results”, The University
of Queensland, 1978.

But of course this is only available from the library here at the University of Queensland.

ol

Sorry 1 don’t have a better relerence for you! U've enclosed a photostat of the relevant
pages of my thesis, but that’s not really what you want.

Yours sincerely,
Elizabeth J. Billington

(QS Tc,b\_@,azfe_akwxj it G~ [FRD e B i )
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isotopy, and state a cbnjectured solution of this problem involving sequences of permutations

763-05-13 ELIZABETH J. MORGAN, University of Queensland, St. Lucia, Queensland 4067, Australia,
On 3 % 3 integer matrices with constant row and column sum. Preliminary report.

3 3
Let P = [p,.] be a 3 X 3 matrix with p.. € {(0,1,2,...,u-1}, such that % p.,, = LIp .=y, for
13 ij i=1 ik =1 kj

k = 1,2,3. Any matrix which can be obtained from P by permuting rows and columns of P or by taking =
the transpose of P is said to be equivalent to P, The number, n(u), of such inequivalent matrices _":
' H=-R Li/2] Li/2f-m =]
for any u 2 2, is given by n(u) = J - Cimp » Where co = L-2itmil if mer # ki,  ar
i=1 m=max{0,2i-u} r=q B 3
and Cimp © L(u-2i+m+2) | if m+r = %i, and where u = 32, 32-2 or 32-1 according as p = 0,1, or 2 (mod- %
.ulo 3). The problem of determining n(u) arose in connection with the enumeration of all non-isomor- -
phic doubly balanced designs on eight elements with block size four. (Received October 20, 1978.) %
_
=

(Author introduced by Dr. Anne Penfold Street).

*#763-05-14 WILLIAM B. POUCHER, Abilene Christian University, Abilene, Texas 79601. A note
on intersection preserving embeddings of partial (n,4)-PBDs. Preliminary report.

Aa (n,K)-PBD is a pairwise balanced design of order n and block sizes from K. If k] =1,
then we replace K with its single element. It has been shown by Lindner and Rosa for Steiner
Triple Systems and by the author for all other (n,K)~PBDs where K £ El% that any collection
of partial (n,K)-PBDs can be embedded in a collection of (v,K)-PBDs preserving initial blockset
intersection. This paper solves the remaining problem for K =il-§. In addition it 1s shown
THEOREM: Any partial SQS can be embedded in a 3 —>2 resolvable partial SQS. (Received
October 20, 1978.) ) :

763-05-15 JACOB E. GOODMAN, City College {CUNY), New York, H.Y. 10031. Configurations in the
- plane: isotopy and combinatorial eaquivalence. Preliminary report. 2

A configuration (Pl,... 'Pn) in R2 is nondegenerate if no three points are collinear e.ndeno lines’
Joining peirs of points are parallel. Let C, C' be nondegenerate n-configurations in R°. ¢ is
isotopic to C' if there is a continuous family of nondegenerate configurations Joining C and C'
Each pair Pi 'PJ in C determines & line LiJ through O, parallel to E; C is combinatorially :
equivalent to C' if the cyclic ordering of th;ls family of lines agrees in both configurations.

A half-space of C is the subset lying on one side of some line. A basic problem in combinatoﬂ :
geometry is that of finding necessary and sufficlent conditions for a family of subsets of a.r;
abstract n-set to be the family of all helf-spaces in some nondegenerate embedding of C in R2
(or in Rd, for that metter). We discuss the_relation between qombinatorie.l equivalence and

of the points of a configuration. (36681V8d October 23, 1978.)

763-05-16 Jean H. Bevis, Georgla State University, Atlanta, Georgfa 30303. Determinants for

variable adjacency matrices. Preliminary report.

For a graph G=(V,E) the free idempotent commutative semiring F over E (considered as a set t_:f‘
lables or indeterminants) provides a natural setting for the study of path algebras over G: .
Although there are no additive inverses in F, a meaningful determinant function may be dafi;;l
for matrices over F. This is obtained by using the symmetric difference of canonical .,,'f
repregentations of elements of F. Many of the results for determinants over the comutat_:f_.\l_:
ring of polynomials over E may be obtained in this new setting. In particular, versions Df
Harary's theorem for the variable adjacency matrix, and Kirchhoff's theorem for the Vari&‘_’ie 3

incidence matrix are obtained for matrices over F. (Recelved October 23, 1978.)

763-05-17  HAI-PING KO, Oakland University, Rochester, Michigan 48063 and DIJEN K. 'R{\Y-EC*E\PDH‘_{R.I."
The Ohio State University, Columbus, Ohio 43210, A multiplier theorem of group rin "; i Af
Let G be an abelian group of exponent v*, Write elements of the group ring Z[Cf] ‘!;nrl-h_ﬂ_ bm;%:" e
Zg c Gagxg, 2, € Z. For every subset D of G, define D(x) = Zd ¢ Dxd' An integer t 1: call';(! :mu_lﬁpll;r
of a member, d(x), of Z[G] if (t,v*) =1 and d(x)) = xBd(x) for some g € G. Theorem.  Suppose d(x)d(x") =
a + bH(x) + cG(x) in Z[G] for some integers a,b,¢, a subgroup H of G, anda homomo’x_:phism _'d :tG=G

A2 ' \;%E:.ﬂj




