


—

L.R., FOULDS AND R,W, ROBINSON®

S2673

The phylogenetic (evolutionary) trees of biology are ;\;;;;Z;%Dé aff_fil————————'

labelled trees. In graph-theoretic terms, a phylogenetic tree is a tree whose points

have been labelled with disjoint subsets of the labelling set. Every point of degree
less than three must have a nonempty label. Formulas arve found for the exzact numbers
of phylogenetic trees with n labels, and nwmerical results are presented for selected
n £ 40. The asymptotic behaviour of these numbers as n > «© is determined. Similar
results are obtained for the mean and variance of the number of points in a phylo-
genetic tree with n labels. The effect of requiring that each nonempty label be a

singleton is als» studied.

1. INTRODUCTION

It has been postulated that existing biological species have been linked in
the past by common ancestors. A diagram showing these links is called a phylogeny or

phylogenetic tree.

Mathematically we define a phylogenetic tree to be a tree in the ordinary
graph theoretic sense together with a map from some set {1,2,...,n} of labels to the
point set of the tree such that every point of degrce less than three is in the image.
It should be noted that some points may have several labels while others may have
none. The number n of labels is termed the magnitude of the phylogenetic tree. The
order of a tree is the number of points in it. These trecs, together with their
significance in molecular evolution, are discussed in Robinson and Foulds [8]. Graph

theoretic terminology not defined in this paper can be found in the book by Harary [4].

A number of methods for constructing phylogenies have been proposed. Trees
produced by various authors for similar sets of species are presented in Foulds et al.
[2]. If phyleogenies for a given set of n species are to be generated, it is of
interest to know how manv possible trees exist. These numbers are calculated exactly
for given n by means of recurrences derived in the next section of this paper. The
mean and variance of the number of points in the trees with magnitude n are also found.
The asymptotic behaviour of the exact numbers and the statistics are determined in
Section 3 using the methods of Harary et al. [3]. A similar analysis is then carried
out in Section 4 with the restriction that all label sets must be singletons. Tables

of numerical results for selected values of n up to 40 are presented in Section §,

* The second author is grateful for the support of the Australian Research Grants
Committee for the project "Numerical Implementation of Unlabeled Graph Counting
Algorithms", under which research and computing for this paper were performed.
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including a comparison of exact values with the asymptotic estimates obtained earlier.

2, COUNTING PHYLOGENETIC TREES

Let Tn be the number of different phylogenetic trees of magnitude n. Our
object in this section is to derive recurrence relations by which Tn can be calculated

for successive values of n. The exponential generating function defined by

T(x) =
n

T xn/n!
0

I~ 8

will be a useful tool in our analysis. In order to establish the mean and variance
of the numbers of points in phylogenies of given magnitude we shall also find recur-

rences involving the number Tn p of different phylogenies with magnitude n and order

’

p. The corresponding generating function is given by

2n-2 A
Z Tn X yp/n!
n=1 p=1 "’

~18

T(X, y) =

Thus T(x) is obtained from T(x,y) by setting y to 1. The fact that 1 < p € 2n-2 is

shown in [8].

As usual in tree counting, the numbers are first determined for trees which
have some point distinguished as the root. In particular, let a planted phylogeny
be a tree rooted at an endpoint and labelled according to the rules for an ordinary
phylogeny except that the root is not to receive any label. Likewise, the root point
of a planted phylogeny is not counted in its order. In the biological context, a
planted phylogeny corresponds to a phylogenetic tree in which a common ancestor is
designated. This is represented diagramatically by orienting all lines away from the

point representing the common ancestor.

Let Pn denote the number of different planted phylogenies of magnitude n,

and let Pn p denote the number of these of order p. The associated generating func-

>

tions are
[ee]
P(x) = ) P xX'ni,
n=1
w 2n-1
POuy) = I 1 p xNyP/mn
n=1 p=1 »P

For a fixed magnitude n » ! there is just one planted phylogeny of order 1,

which is termed the trivial phylogeny. Thus, the exponential generating function for

trivial planted phylogenies is

- ———
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(x+§2+§3+ <Dy = (e-Dy .
Any mon-trivial planted phylogeny can be viewed as the result of joining one or more
planted phylogenies at their roots, these being identified as a single ordinary point
which is then joined to a new root. 1In this process the original root point must
receive some label if it becomes a point of degree 2, and in any case may receive new
labels. Thus the generating function for planted phylogenies in which the point

adjacent to the root has degree 2 is
X
(e"-DyP(x,y).

Here, as above, (ex-l)y enumerates the possibilities for the point adjacent to the
root, while P(x,y) enumerates the possibilities for completing the tree. As usual

in labelled counting problems the product of the exponential generating function
accounts for the number of ways in which the sets of labels from the two parts can be
obtained from the label set of the union. (See for example Chapter 1 of Harary and
Palmer [5].) Similarly, if the point adjacent to the root has degree k+1 » 3, the

number of possibilities is enumerated by

exy P(x,y)k/k!

In this expression exy accounts for the point adjacent to the root, since it need not
be labelled. There are k planted phylogenies to be joined at this point, and we
divide by k! because the sequence in which they are added is immaterial. Summing
over k 2 2, adding in the other two terms and taking advantage of the exponential

form of the sum, we have

x+P(x,y)

P(x,y) = ye Y -yP(x,y) . (2.1)

Setting y = 1 gives
ex+P(x)

1+2P(x) =

Then differentiating and simplifying to eliminate the exponential yields
Pr(x) = 1+2P(x) + (P(x)2)" . (2.2

Given that P, = 0, comparing coefficients of xn_}Tn—l)! in this equation gives P1 =1

and
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n
O<i<n 1 n—i(i) (2.3

for n > 2.

The generating function for the unrooted phylogenetic trees T(x,y) can now
be determined in terms of phylogenetic trees in which a point is distinguished (point-
rooted) and those in which a line is distinguished (line-rooted). A point-rooted tree
is associated in a 1-1 fashion with the planted tree obtained by joining a new root
point to the original. All planted trees are obtained in this way except for those
in which the point adjacent to the root has degree 3 and has received no label. The
latter are counted by the exponential generating function yP(x,y)?/2, and so point-

rooted trees are counted by

P(x,y) - yP(x,y)?/2

A line-rooted tree can be viewed as the result of identifying the roots of two planted

trees, which are then suppressed to form the root line. These are therefore enumerated

by

P(x,y)%/2 ,

the factor of 2 accounting for the fact that the same line-rooted tree is obtained by

interchanging the two planted trees.

- The difference between our expressions for point- and line-rooted trees
will be T(x,y). For on assembling the terms corresponding to a particular unrooted
tree of magnitude n and order p we find pxnyp/n! —(p—l)xnyp/n! = xnyp/n!. This is
because the tree has no automorphisms, having been labelled at all its endpoints, so
that all p points give distinct point-rooted trees while all p-1 lines give distinct

line-rooted trees. Thus we have

ToOY) = POy) - Y52 Pl y)? (2.4)
Setting y = 1 we obtain
T(x) = P(x) -P(x)2 . (2.5)

On differentiating with respect to x and comparing with (2.2) one sees that

TH(x) = 1+ 2P(x).



114

We can compare coefficients of xn—l/(n—l)! to determine that T, = 1 and

T = 2P (2.6)

for n 2 2. Thus (2.3) can be used to compute values of Tn. The results for selected

n up to 40 are listed in Section 5.

Since a phylogenetic tree of magnitude n may have any order from 1 to 2n-2,
it is of interest to determine the mean Ho and standard deviation 9, of the number of
points among all such trees, This will be done by finding recurrence relations for

-the first and second moments about the origin, namely

(1) 2n-2 5
T = Tp T > i=1or2.
p:l )p
Then as usual we have
- (1)
b= T /Tn ,

2 _ o(2)
on = (T,°7/T) -l

The exponential generating functions for the moments are

T(i)(x) = z T(i)xn/n!, i=1or2
n=1 "
Since
1MW g - T (x,1)
and

@, _ .
T ()\) - Ty),(x)l) Ty(xxl) > (2-7)

we can evaluate the moment generating functions on the basis of previous equations.

Differentiating (2.4) gives

TY(X,Y) = PY(X,Y) - 30(x,y)? -(Y*l)P(X,Y)Py(X,Y) (2.8)

Now differentiating (2.1) we find
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P
P00y = PO (P () (2.9)

which with (2.8) simplifies to
P(x,y)
T (x,y) = —22L2_ 3P(x,y)?
y( Y) y P (x,y)
Differentiating again and simplifying with (2.9) yields
Ty (6¥) = POGY)2/y2 (1-(1y)P(x,y))
Setting y = 1 in both equations and using (2.7), we have

T (9

P(x) - $P(x)? , (2.10)

™ ) = 1 g v p(02/(1-20 (1)

Recurrence relations are obtained by comparing coefficients of xn/n!. The first of

these can be simplified using (2.3), giving T(]) = 1 and

(SO
T, = 4P+ P (2.11)
for n > 2, In the second equation we write
1) o (s (2.12)
n n n

where Sn is the contribution of the right hand term. Thus Sqg =0, § =0, and for

nzx2, Sn is determined from Pi (1 <£ign) by the recurrence

n
S, =P, -2f y+2 ] opo.s. () . (2.13)
0<i<n

Now from the values of P_ and T_ mentioned earlier and the last three
relations one can compute values of Tﬁl) and Tﬁz), and hence of M and I The

results for 1 £ n £ 10 and n up to 40 by 5's are listed in Section 5.
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3. ASYMPTOTIC BEHAVIOUR

In this section the asymptotic behaviour of Tn’ W and 0,asmn>eis
determined. Since Pn is the basis for the equations defining these quantities, we
start with a study of the exponential genmerating function P(x). Setting y to 1 in
(2.1) we had

1+2p(x) = e P(X) ' (3.1)

from which we can solve for x to obtain
x = log{1+2P(x)) - P(x) . {3.2)

Regarding P as a complex variable, x is clearly analytic for P # -%, and the deriva-
tive (1-2P)/(1+2P) is nonzero when P # §. Also x = 0 when P = 0, go the inverse
function is analytic in some neighbourhood of x = 0. The power series expansion of
this function about x = 0 is our generating function P(x), which is now seen to have

a positive radius of convergence, say p. As Pn 2 1 forn > 1 we see that p < ©, since
P(x) cannot attain the value % within the circle of convergence. Then x = p is a
singularity of P(x) by Pringsheim's Theorem (see Hille [6, p.1331), and since

P(p) > 0 we must have P(p) = %. Also, for Ix| = p and x # 0 we have IP(x)[ <+ so
that x = p is the sole singularity of P(x) on its circle of convergence, Finally,

setting x = p in (3,2) gives

(3.3)

i

p=1n 2 -

So far we have established the results required of steps 1-11 in the 20 step
algorithm of [3], by methods which are more direct than usual for tree counting prob-
lems. However the remainder of the development is standard, and so we refer to this
paper for the explanations of the remaining steps and confine ourselves to performing

the necessary calculations.

At P = } the second derivative of x as a function of P ig -1, and so from
steps 12 and 13 we have that x = p is a branch point of order 2 for P(x). Thus as

in step 14 one has an expansion of the form

POO = 3-b(p-) 2 4b, (020 + b, (p-x) /%4

valid in some neighbourhood of x = P. Substituting into equation (2.2) gives a
relation which must be satisfied by this expression. One can then compare coeffic-

1
ients of (o—x)—f,(p—x)o,(p-x)%,... To determine as many of by,b,,... as required. In
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particular we find b12 = 2, so that b, = Y2 in order for the expansiocn around 0 to
agree with the expansion around p where their circles of convergence overlap. Two
more comparisons then establish that b, = 2/3 and by = -1/9¥2, so that

1/2

1/ -1/2(p_x)3/2 N

P(x) = §-2 (3.4)

(p-x""? 4 2(0-x) - 2

To evaluate the contribution of a term (o—x)k/2 in this expansion, note that
the coefficient of & in (1—x)—S is just T(s+n)/T(s)T(n+1) provided s is not a non-

negative integer. From Stirling's formula the latter is

ns—1 L S(s-1)

1
TGy (1 = +0(n—2)) (3.5)

L

as n ~ ©, Thus the term —bl(p—sz contributes

-1/2 1/2 -3/2 -n 3 1.

(2m) p ' “n o (l+§F+O(n2)]
3/2 .

The next term, b3(o—x) , contributes

1 -1/2 3/2_-5/2 -n 1

- Lm0/ 2 1 o)

when taken to the same order. The remaining terms collectively contribute
O(n_7/zp—n), as can be seen from Darboux's Theorem (as in Theorem 4 of Bender [l])

or from Pdlya's Lemma (as in [3]). In sum we have

1/2

P La/o - 3
o (2) 32, n[1+%2%£+ o(;li—)] ) (3.6)

in view of p = 1In 2 - 1/2 .

Since T = 2P and T(I) = P +P for n > 1 we also have
n n-1 n n n-1

|

| .

1/2
- p -5/2_-n 23-1n 2 1.
ar - 200 ey e S ) (3.7)
and
(1)
T 1/2 z
n p -3/2 -n 231In2-7 1.
5 L (1e =5 00) (3.8)

b SR




118

Taking the ratio of (3.8) to (3.7) gives the average number of points in a tree of

magnitude n as

n 2in2-5/2 .. 1.
M= 35 U‘T* O(nz)} ) (3.9)

To analyse the variance similarly, start with the exponential generating

function S(x) = P(x)2/1-2P(x). Substituting the expansion (3.4) for P(x) yields

7/2 x)—x/z 11,49 ,-9/2

-5 -02e . (3.10)

S(x) =2 "“(p-

As before, (3.5) can be applied in conjunction with Darboux's Theorem or Polya's Lemma

to evaluate the coefficients of S(x) asymptotically. The result is

S - - - - -
°no_, 7/2(m) Ve -1/2 (1. 138 72294 1n2+0(l2_)]
n! n n

Finally Oi = (Sn/Tn) +un-ui , SO this can be combined with (3.7) and (3.9), giving

2 _ 1-4p
o, = 16p2 " " +0(1) . (3.11)

In computing the variance the leading terms added out, with the effect that
while the average is 0O(n), the standard deviation is O(nl/z). Thus the distribution
of the number of points in a tree of weight n becomes relatively more sharply peaked

with increasing n.

4. SINGLETON LABELS

Let Th denote the number of phylogenies of magnitude n in which every non-
empty set of labels contains just one member. Our object is to evaluate Tn exactly
and asymptotically, and to do the same for the average and variance of the point dis-
tributions for these trees. The obvious approach would be to parallel almost exactly
the development outlined in the previous sections, with appropriate changes in certain
details. However there is a very simple relation between Tn and Tg which will enable

the same results to be obtained much more quickly.

Once again the exponential generating function is a natural tool. We let

T(x) = ]} Thxn/n!
n=1
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Every tree counted by T(x) can be obtained from a tree counted by T(x) by enlarging
the set of labels. Each singleton label set can be replaced by a set with 1,2,3, ..
labels. The exponential gencrating function for these possibilities is

e 1 = x+x%/21+x3/31 + ..., since among themselves the k labels of a particular set
have just one ordering. Phylcogenies with exactly n non-empty sets of labels are
counted by T%(ex—l)n/n!, since multiplication of exponential generating functions
accounts for the number of ways that the various label sets can be interleaved. Then

summing over n gives

il

T(x) = T(e*-1) ,

which can be inverted to the form

T(x)

i

T(In(l+x)) . (4.1)

By the same reasoning, the replacement of x by In(l+x) serves to transform
P(x),T(l)(x), and T(Z)(x) to exponential generating functions P(x), T{l)(x), and
T{z)(x) for the singleton label set cases of planted phylogenies and the first two
moments of the point distribution of free phylogenies. The transformation can be
couched in terms of the Stirling numbers s(n,k) of the first kind, in view of the

well-known fact that

; s(n,k)xn _ ln(1+x)k

n=k

n'! k!

Thus (4.1) is converted to

=

Tks(n,k) . (4.2)

n 1

[l =]

k

The same applies to Tﬁl) and Tﬁz), and so the exact numbers in the singleton label

set case are readily calculated from the numbers in the unrestricted case.

In order to analyse these numbers asymptotically, the radius of convergence
of P(x) and its behaviour on the circle of convergence must be established. Replacing
x by In(l+x) in (3.1) one finds

-P(x)

1+x = (1+2P(x))e (4.3)

Thus x is analytic as a function of P, with x = 0 when P = 0, Differentiating, we

have
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dx _ (1—2§]e—P s

dr

which is nonzero just when P # 1/2. Also F; %21 for all n 2 1, so it follows as in
the previous section that P(x) is apalytic in a neighbourhood of x = 0 with radius of
convergence ¢, that 0 < ¢ < «, that x = 0 is the sole singularity of P(x) on its
circle of convergence, and that P(¢) = 1/2. From the latter result and (4.3) we find
that

o=272 9 . (4.4)

Equations giving T(x), T{l)(x) and T(Z)(x) in terms of P(x) are obtained
from (2.5) and (2.10) when x is replaced by In(l1+x). In this way it can be seen that
each of these generating functions has x = 0 as the only possible singularity in the
circle |x| £ 0. Near the singularity we replace p-x with p-ln(l+x). Now 140 = ep,

SO

C-X)

p-1n(l+x) = -In(l “Tvo

Expanding on the right in powers of 0-x and taking the square root, we have

' 1/2 - (0= 2 -xy37/2
(- mae0)/? = EHVEL e, (4.5)

Together with the expansion (3.4) for P(x) this gives

P(x) = L-2/2 (02 pmalz(exyarz, (4.6)

1+o 1+o

for x in some neighbourhood of o.
To find a similar expansion for T(x) efficiently requires an analogue of
(2.6). Differentiating (4.1) gives

TH(x) = T {In(1+x) )/ (1+x) .

Replacing x by In(l+x) in the equation preceding (2.6}, we find

T' (In(1+x)) = 1+ 2P(x)
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Together they produce
T = (1+2P(0) /(1) (4.7)

which is the desired equation. Now, writing 1+ x = (1+U)(l —(0—x)/(l+o)) and using
(4.6) we have

TH(x) = el/2 -e3/u(0—x)1/2 +ge(o—x) —;%es/“(o—x)3/2i ... (4.8)

for x near o.

From (2.10) we have
T - P - 52 |
S(x) = P02/(1-2P(x) , (4.9)

where S(x) = T{Z)(x)-T(l)(X)-

With (4.6) this implies

T(l)(x) i g —%el/q(c—x)l/z —%el/z(c—x) +i%%e3/“(0—x)3/2i o
S0 - ée—l/h(o_x)—l/?_ _21_‘3 . l_99_5561/4(0_)()1/2i ] (4.10)

Now, as in the previous section relation (3.5) can be applied to these

. . 1/2 . .
expansions in (0-x) / . This gives

P 1/2
no_ 1. 1/% -1/2 1/2 -3/2 -n lle " "4 1.
nf = 2% T e e (e S *0C)
Tn _ 1 3/u_-1/2 3/2 -5/2 —n[1+47el/2—4+0 1y @1
nr =3¢ T 9 n o 48n (nz > )
1/2
_n -1/2 8-7e 1,
n_ 20 € (1 4n +O(n2 ),
and
- _ _n 1/2 1 4.12)
9 % ez (5e'/7 - 8) (“O(H)) . (4.

As before ﬂh denotes the average number of peints in a phylogeny of magnitude n having

singleton label sets, and 5; is the standard deviation of this distribution. Again
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Un = 0(n) and Un = 0(n /2), so the distribution of the number of pointézzecomes

2 b >

narrower as n increases.

\/j

S. NUMERICAL RESULTS

The values of P, T ?h and Th for 1 ¢<mn ¢ 10 and n = 15,20,25,30,35 and
40 are presented in Table 1., The full range of values for 1 ¢ n € 40 is available
from the second author. Computation of Pn and Tn were based on (2.3) and (2.6).
Then Tn and Pn were obtained by applying (4.2) and its analogue for the planted trees.
In Table 2 the corresponding values of [ 0;, ﬁ; and 53 are given. This required
Tél) and Sn, which were determined from (2.11) and (2.13), and Tﬁl) and §£, which
were then determined using Stirling numbers as in (4.2). The computations were

programmed on a PDP 11/45 by A. Nymeyer while employed under an A.R.G.C. grant.

o
=1

(W~ W
(=R R~

N
=
Lo I I R A R

N
=S N

416
64
262
32

7552

832
> 4336
396

1 76128
15104
91984

6692

50 18624
3 52256
23 81408
1 43816

Table 1. Exact Numbers of Phylogenies
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Table 1 (concluded)

P
n
n Tn
P
n
T
n
1689 68192
8 100 37248
728 00928
37 56104
65632 82944
9 3379 36384
25666 06784
1155 53024
28 89091 31776
10 1 31265 65888
10 25152 01984
40932 36352
) 2 08198 89496 01901 60896
15 5956 91776 27763 67104
45349 58105 28699 24352
1155 63646 85240 67328
93018 62240 00428 24880 71556 95616
20 1942 20449 17978 87651 06001 67424
12420 03507 66670 45650 11644 04736
232 32788 43785 27949 56315 70944
1 57284 43230 10411 26702 99480 89652 15960 43264
25 2585 37191 04491 56575 28193 77679 68528 13824
12866 79332 08929 57972 68733 16671 02077 41952
190 10306 66913 48057 68985 15093 48802 23232
7 59321 59246 03104 19251 95545 54129 56086 14450 57748 66432
30 10291 77634 70290 83101 81616 82246 65625 56728 22435 67616
38048 13710 05887 64417 78763 90069 07733 87235 68876 25728
464 50699 83318 12423 68341 05995 95743 73022 72743 17824
87 17281 46232 86686 06823 23779 47767 41329 89579 47614 90019 03637 79072
35 1 00519 01170 77685 23635 06696 09822 93259 04307 88912 77330 29272 28928
2 67516 97679 88151 87936 51523 29706 91141 56231 24276 92066 76490 81344
2782 57165 32537 80110 98592 94572 67467 11087 87167 24515 55351 59296
209314161 45446 15020 97212 45396 21891 13027 41323 87988 37211 16645 09080 98849 66912
40 21 00155 29520 59047 86233 43248 35161 15962 58872 34302 21145 78442 80356 15416 64768
39 33638 55022 00922 81963 78448 50186 24000 33946 96336 89340 63648 03382 88097 36192
35640 23605 11776 19860 19442 08827 46565 50471 41246 74673 65971 60286 21893 14048
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n u o n

¢}

n n n n
1 1-00000 0+00000 1-00000 000000
2 1-50000 0+25000 2-00000 0-00000
3 2:50000 0-75000 3-25000 0-18750
4 3+75000 1218750 4+59375 0-42871
S 5-03846 1-57544 597475 0-68118
6 6°33051 1-95856 737268 ©0-93493
7 762355 234084 8+77936 1-18787
8 891706 2:72267 10-19102 143975
9 10-21083 3-10424 11-60575 1-69071
10 1150475 348565 13-02251 1-94093
15 17-97539 5-39172 20-12104 3-18541
20 24-44666 7-29715 27-22954 442462
25 30-91814 920237 3434162 566168
30 37-38972 11-10750 4145540 6-89765
35 43-86136 13-01257 48+57010 8:13301
40 50- 33302 14-91762 55-68536 . 9-36799

Table 2. Mean and Variance of Number of Points in Phylogenies

For each series of exact values in Tables 1 and 2 we have asymptotic esti-
mates provided by the first two terms on the right side of (3.6), (3.7), (3.9), and
(4.11), and by the first term of (3.11) and (4.12). We denote the estimate by a -,
so that 6n2 = [(1—40)/1602]n and soon. In Table 3 the exact values are compared with
the asymptotic estimates at n = 10,20,30 and 40. This is sufficient to indicate the
relative magnitude of the errors in the approximations, and to reveal that these
errors already show the expected dependence on n. For instance (Pn—ﬁn)/Pn gives the
proportion by which the estimate is less than the actual value of Pn. This reaches

2

almost 10™% at n = 40. The relative error is O(n?), so multiplying by n® gives a
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quantity which is 0(1). Indeed it seems to be increasing very slowly, as seen in the
second line of the table. Similar obseérvations can be made for Tn’ ?h and Th. The
averages and variances are presented in terms of absolute error, since their magnitudes

are O(n) with constants reasonably close to unity.

n 10 20 30 40
(P ,-P /P 1+6424 x 1073 41226 x 107" 1-8339 % 107" 1-0320x 107"
n2(P -13n)/pn 0-16424 0-16490 0-16505 0-16512
(T -%n)/T 2827 %1072 74208 % 107" 3224 x 1072 1-819 x 107>
n? (T -%n)/'r 2-827 2:883 2902 2-911
( -P /P Se64x 107" 1-52x 107" 6:92x 107" 3.94x107°
n?(P P )/F_ 564 x 1072 6-09x 1072 6-23x 1072 6-30x 1077
(T -T /T 1510 x 1072 3990 x 1073 1-803x107° 1-023x107°
n2(T -T )/T 1510 1596 1-623 14636
n n n
B 2:78x107° 1-19x 1073 7:58x 107" 556107
n
n(i -1) 278 x 1072 2-38x107% 2:27x107° 2.22x1072
n
or21 -cfl 03243 0-3227 0+3222 0+3220
TR 4-89x 1072 2:22%x107% 1-43% 1072 1-06 x 1072
n(ﬁn-ﬂn) 0-489 0443 0+430 0:423
Enz _En2 0527 0-511 0+505 0-503
Table 3. Accuracy of Asymptotic Estimates

6. RELATED RESULTS

The methods of the present paper have been applied to other classes of trees

which are relevant to the formation of phylogenetic diagrams in biology.

These classes

are determined by applying certain combinations of the following conditions: no

points of degree 2 are allowed;

labelled; each label set is a singleton.

where.

every point has degree 1 or 3;

only endpoints are

It is planned to present the results else-
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The phenomenon of relatively small variance has been observed in the

statistics of some other variables in labelled trees. For example when k > 0 is

fixed the number of points of degree k in a random labelled tree has average and

variance both O(n); see Moon [7, p.73]. The same is also true for the number of

paths of length k in a random labelled tree (see [7, p.78]).

(1]
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(5]
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