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{n this paper the close relationship between a previously investigated recursive function and the
symuliar Fibonacci sequence is established. An efficient iterative program for the computation of the
~ecursive function, which is based on this relationship, is given. The correctness of the program follows
irom an earlier proof of equivalence of the recursive function and a function based on the Fibonacci

wquence. The structural dissimilarity of the functional specification and the implementation suggests
¥

ot it s unlikely that the latter can be generated from the former using standard transformation
Lechmiques.
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| INTRODUCTION

Rurton and Campbell [1] have defined a recursive function, which they describe as
.urious, and have investigated it to show that it has an alternative closed form
representation. The function is in fact even more curious than they revealed. In
this paper it will be shown that the function is also the sequence of partial sums of
1 sclf-generating function and, in addition, that is closely related to a Fibonacci

«quence. On the basis of these observations a concise iterative program for its
cvaluation is given.

2. OBSERVATIONS ON h
Definitions
{ curious function

Burton and Campbell define the curious function, h, as follows:
h:N-N

h(0)=0
h(k) =k —h(h(k — 1)}, k>0.
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Sequence of partial sums of a sequence: The sequence B is said to be the sequence of
partial sums of the sequence A if the nth term in B is equal to the sum of the first
nterms in A.

Observations. The integer sequence generated by h, of which the table below gives
an initial subsequence, does not appear in Sloane’s classic Handbook of Integer
Sequences [2].

0 | 2 3 4 5 6 7 8 9
0 0 1 1 2 3 3 4 4 5 6
10 6 7 8 8 9 9 10 11 11 12

20 12 13 14 14 5 16 16 17 17 18
30 19 19 20 21 21 22 22 23 24 24
40 25 25 26 27 27 28 29 29 30 30

Observation of this initial subsequence, H, reveals that the number of occur-
rences of the value x in H is as follows,

Table 2 Table of SG1

-

0 1 2 3 4 5 6 7 8 9 (=
ol 1 2 1 2 2 1 2 1 2 2 » '
oy 1 2 2 1 2 1 2 2 1 2 ¢ . ( 11 (O
20| 1 2 2 1 2 2 1 2 1 2 .lf\ "ILQ"(?-'

and that the expression h(k) —h(k — 1) takes the values in the table below
Table 3 Table of SG2, 0 <k <50

L0 12 3 4 5 6 7 8 9 ,_C f"L{
0o/ 0 1 0 1t 1 0 1 0 1 1 Yol X
o0 1 1 0 1 0 1 1 0 1
2000 1 1 0 1t 1 0 1 0 1

The sequence SG1 is included in Sloane [2]. The reference there directs us to
Mulcrone’s Sell Generating function [3] which is itself the solution to a problem
originally posed by Pennington [4].

The sequence SG2, generated by the expression h(k)—h{k—1), and which is
therefore the sequence for which the sequence H is the sequence of partial sums,
bears a striking resemblance to SG1. [t appears that SG2(x)=SG1(x)—1, x>0.

3. PENNINGTON’'S COWS, AND THE SEQUENCES SG1 AND SG2

The problem posed by Pennington [4] was stated as follows:

“A rancher bought a white cow, and the following year a red one. Each
succeeding year he duplicated his purchases of the preceding two years, buying the
same number of cows, of the same colours and in the same order. Thus, in the
third year, he bought a white and then a red cow; in the fourth year, a red, then a
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white, and then a red cow; and so on. What was the colour of the nth cow?”
Mulcrone’s solution [3] is as follows:

Associate the number 1 with a white cow and the number 2 with a red cow,
then the sequence defined by the problem is:
521,2,2,1,2,1,2,2,1,2, 2,1,2,1,2,2,1,2;.....

where “;" denotes year boundaries.

This sequence, ignoring year boundaries, is the self generating sequence SGI1. If

the cows had been allocated the numbers 0 and 1 instead, SG2 would have been
produced.

0;1;0,1; 1,0,1; 0,1, 1,0, 1; 1,0,1,0,1,1,0,1;....

» 4y

Further observations on SG2

DEFINITION
Fib: N> N
Fib(0) =1
Fib(1)=1

Fib(n) =Fib(n— 1)+ Fib(n —2),  n>1
S\-L-ise that SG2 is partitioned as follows

0; 1;0; 1; 1,0; 1,0,1; 1,0,1,1,0; 1,0,1,1,0,1,0,1;. ...
6 7

01 2 3 4 5

l.e. starting with 0 and introducing boundaries after Fib(0), Fib(1), Fib(2),...
components.

Note that the cows purchased in the nth group (n>2) is the sequence formed
by concatenating the subsequences with indices 1 to n— 2.

Let S; be the ith subsequence of the partitioning described above. Let #8S; and
#1; denote the number of items in Si and the number of ones in S, respectively.

iv) 1, for n>2,
D S,=8$,nS;nnS,_,

0) #S, =Fibn—1)
i) 4r,=Fibn—2)

#S, =Fib(n+ 1)

‘M=,'-_'M=

%1, = Fib(n)

1
—

(Note: n denotes sequence catenation.)

J.C.M{-
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Proofs of these properties are straightforward but tedious and are therefore
omitted. :

The observations above suggest that, since the curious function is closely related
to the self-generating function, SG2, which in turn is closely related to the
Fibonacci function, Fib, it may be fruitful to investigate the possibility that h can
be explicitly represented in terms of Fib. It will be shown later that such an
explicit relationship can indeed be established. First, however, it is helpful to
discuss a particularly apt system for the representation of natural numbers.

4 FIBARY REPRESENTATION OF NUMBERS

Derinition  The Fibary representation of a number is similar to its binary
representation with the exception that the weight of each position increases in a
Fibonacci rather than an exponential manner. Thus, for example, the weight of the
positions from right to left are 1, 1, 2, 3, 5, 8, 13 etc. rather than 1, 2, 4, 8, 16, etc.
Note, however, that the Fibary representation of a number may not be unique.

Table 4 Examples of Fibary representations

=

Possible Fibary representations for n

0 00 or 0

1 10 or 0l

2 100 or 11

3 1000 or 101 or 110

4 1010 or 1001 or 1010

5 10000 or 1100 or 1011

6 10010 or 1000} or 1110 or 1101
7 10100 or 10011 or 1111

8 100000 or 11000 or 10110 or 10101

A normalised Fibary representation is characterised as follows:

The Fibary representation of 0 is 00
The Fibary representation of 1 1s 10

The Fibary representation of n>1 is constructed as follows:
If n is greater than or equal to the mth term in the Fibonacci sequence and less
than the m + 1th term then its Fibary representation is:

100...00 + normalised Fibary representation for n-Fib{m).

mzeros

{The operation of addition is the same as for binary representation since no
carries are involved.)
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Table 5 Examples of normalised Fibary representations

n Normalised Fibary representation for n

00

10

100
1000
1010
10000
10010
10100
100000

OO0~ N L B N — O

Notes

All normalised Fibary representations terminate with 0.
Each number representation has the structure ((10)0™)" with m,,n=0.
Consequently, the string representing a number can never have two adjacent
occurrences of 1.

The successor function
This function is defined by the following cases:

Case (i) If k has the normalised representation x00{10)* then k+1 has the
normalised representation x01(00).

Case (i) 1If k has the normalised representation x00(10)*0 then k+1 has the
normalised representation x01(00)*0.

Case (iii) 1f k has the normalised representation x000 then k+1 has the
normalised representation x010.

Subtraction

Later it will be required to subtract a Fibary representation with a particular
structure from a normalised Fibary representation with a related structure. The
effect of this operation is captured by the following theorem.

THEOREM 1 If the number with normalised Fibary representation x00 has the
number with Fibary representation x subtracted from it, the difference has normalised
Fibary representation x0.

Proof A proof of this result is equivalent to proving that x + x0=x00.
The proof is by induction
1) Base step:

x=1

) 041=1+1=2=100.
1) Induction step:

Suppose that x0 is the normalised Fibary representation of an arbitrary Natural
Mimber k and assume the result for all n<k.
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The proof proceeds by addressing the three possible structures for k described [
above. The proof in each case is similar so only one case is treated below.

Consider Case (iii) above:
If k has the normalised Fibary representation z0O00 then k+ 1 has the normalised

Fibary representation z010.

Since x0 = z000 it follows that x =200 and x00=z0000.
Thus z000 + z00 = z0000 by the induction hypothesis. |
To show that the result is true for k + 1, first note that z010=2z000+ 10. [

Then
2010 + 201 =(z000 + 10) +(z00+ 1) ... Fibary arithmetic

=(z000+2z00) +(10+1) ... by commutativity of +
=z0000+ 100 ... by induction hypothesis
=z0100

5. AN ALTERNATIVE DEFINITION of h
DeriniTioN  Let G be defined recursively by:
G:N-N

G(0)=0

G(k)=Fib(m — 1)+ G(k — Fib{m))
where Fib(m) <k <Fib(m+1).

Let F:N—N be defined by:

J
F(n)=the number with Fibary representation that is the normalised Fibary .
representation of n with the last 0 removed. 1

|

g F(7)=F(10100)=1010=4

F(20)=F(1010100)=101010=12

TheoreMm 2 F satisfies the definition of G.
Proof By induction

1) Base step:
The normalised Fibary representation of 1 is 10

G(10) =Fib(0) + G(0) by the recursive definition
=1+0=1

F(10)=1
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i) Induction step:
Assume the result for all n<k

G(k)=Fib(m — 1) + G(k — Fib(m)) where Fib(m) <k <Fib(m+ 1)
k has the normalised Fibary representation of 10x0 (where x has m—3 digits)
G(k) = Fib(m— 1) + G(x0).
Since x<k it follows by the induction hypothesis that G(x0)=x.

Then G(k)=Fib(m— I} +x=10x.
F(10x0) = 10x.

THEOREM 3 The functions F and h are equivalent,
Proof By induction

1) Base step:
This follows directly from the definitions of F and h.

F(0)=0=h(0)

i) & “uction step:
Assu&'that F(j)=h(j) for all j<k.
h(k+l)=k+1—h(h(k)) -.. from the definition of h.
By the hypothesis h(k)=F(k) and, since h(k) <k,
h(h(k)) = F(F(k))
h(k +1)=k+ 1 — F(F(k)).

However, k has one of the following normalised representations

a) x00(10)
b) x00(10)°0
¢) x000.
Consider each of these cases in turn
Case (a)
F(k) = x00(10) ~ 1 ...definition of F
=x01(00) 10 ...normalisation
F(F(k)) = x01(00) ...definition of F
h(k + 1) = x01(00) — x01(00) ... SUCCessor
=x01(00y " 10 ...subtraction
=F(k+1).

41
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Case (b)
F(k) = x00(10) .. definition of F
F(F(k)) = x00(10y" ~'1 .. definition of F
=x01(00)"~'0 ..normalisation
h(k + 1)=x01(00)0— x01(00)’ ~'0  ...successor
= x01{(00) ..subtraction
=F(k+1).
Cuse {c)
F{k)=x00 ..definition of F
F(F(k))=x0 .. definition of F
h(k +1)=x010-—-x0 .. successor
=10+ x000—-x0 .. Fibary arithmetic
=10+ x00 ..subtraction
=01+x00 .. Fibary equivalence
=x01 .. Fibary arithmetic
=F(k+1).

6. ITERATIVE PROGRAM FOR CALCULATING F

The program below is easily extracted from the functional specification for G.
Since G is primitive recursive and therefore total and since F satisfies the
specification of G the program computes F. Since F has been shown to be
equivalent to h the program also computes h.

fib, previib:=1,1;

{Loop invariant
There exists m such that
fib=Fib(m) &
previib = Fib(m — 1)}

do fib < =n
—fib, prevfib: =fib + prevfib, fib
od;

fini=0,N;

{Loop invariant
f =h(N)—h(n)
There exists m such that
fib=Fib(m) &
previib=Fib(m—1) &
n<Fib(m+ 1)}

don>0
—if n>="Mb
—n, f:=n—fib, { +prevfib
ﬁ.

fib, prevfib: = prevfib, fib —prevfib
od;
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The assertions which annotate the program may be used to generate the
verification conditions on which the proof of correctness of the program rests, The
proofs of these conditions follow straightforwardly from the discussion given
earlier.

7. CONCLUSION

In this paper a further investigation of an interesting recursive function has been
undertaken. This led to the discovery of an efficient iterative algorithm for its
evaluation. The study provides further evidence that the ability to construct
efficient implementations from functional specifications can sometimes require a
degree of intuition beyond the scope of the transformational methods advocated
by Burstall and Darlington [5] and others. The deficiency of such methods has
already been pointed out by Dijkstra [6].
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