A5315 Scan J. A. Reeds, NJB 3 pages emails 1 segrem

From reeds Thu May 16 20:47:17 EDT 1991 Status: R

a[1]=1 a[2]=2

> JA Reeds DE Knots NJA's

a[3]=8 a[4]=42 a[5]=262 a[6]=1828 a[7]=13820 a[8]=110954 a[9]=933458 a[10]=8152860 a[11]=73424650 a[12]=678390116 a[13]=6405031050 a[14]=61606881612 a[15]=602188541928 a[16]=5969806669034

>From gauss!arpa!SAIL.Stanford.EDU!DEK Sun Jan 29 00:06:50 1989

Message-ID: <4gbTS@SAIL.Stanford.EDU>

Date: 28 Jan 89 2107 PST

From: Don Knuth <DEK@SAIL.Stanford.EDU>

Subject: meander numbers

To: reeds%gauss@RESEARCH.ATT.COM, las@RESEARCH.ATT.COM

CC: VRP@SAIL.Stanford.EDU

Vaughan Pratt couldn't resist computing those numbers on his SUN workstation, using a recurrence I thought of (an improvement of Koehler's approach)... The recurrence involves nC[n] values to compute the meanders that cross 2n times, where C[n] is the nth Catalan number. (Koehler's approach had $n^2C[n]$ for the strip-of-stamps problem.) Here are Vaughan's results, which agree with yours up to n=14 (the largest value you sent me):

[the first experiments, Thursday morning 26 Jan]
n A[n] wall clock secs max f(alpha,k)
11 73424650 8 4210
12 678390116 32 12198
13 6405031050 117 37378

[to go further meant going from 16 bits to 32, with paging onto disk; so he implemented a caching scheme, which slowed down the calculations:]

n	A[n]	wall o	clock	secs	cache	hits	cache	accesses
6		1828	0		638		848	
7		13820	1		2487		3279	
8		110954	0		9658		12675	5
9		933458	1		37469		48915)
10		8152860	6		148974		19936	50
11		73424650		20	5.9	95854	81802	26
12		678390116	5	85	25	543840	38119	940
13		640503105	50	454	12	2649463		22757106
14		616068816	512	235	8 63	1337863		124032186
15		602188541	1928	126	24 30	08321165		681140900

[then on Friday he had the value of A[16] but deleted it accidentally, so he has to compute it all again! We'll send A[16] soon. It looks like A[17] will be the limit of this particular approach; we need about 4^n units of memory as well as time. Vaughan can save the memory when computing

A[17], because he won't have to store the values that would otherwise be used to make A[18]. I suppose the 50% hit rate in the cache can be improved somehow, but still the numbers need to be stored somewhere...]

>From gauss!arpa!SAIL.Stanford.EDU!DEK Mon Jan 30 23:00:32 1989

Message-ID: <1\$hZHl@SAIL.Stanford.EDU>

Date: 30 Jan 89 1149 PST

From: Don Knuth <DEK@SAIL.Stanford.EDU>

Subject: A16

To: reeds%gauss@RESEARCH.ATT.COM, las@RESEARCH.ATT.COM

28-Jan-89 2221 coraki!pratt@Sun.COM A16

Received: from Sun.COM by SAIL.Stanford.EDU with TCP; 28 Jan 89 22:21:26 PST

Received: from sun.Sun.COM (sun-bb.sun.com) by Sun.COM (4.1/SMI-4.0)

id AA05027; Sat, 28 Jan 89 22:22:47 PST

Received: from coraki.UUCP by sun.Sun.COM (4.0/SMI-4.0)

id AA06143; Sat, 28 Jan 89 22:20:36 PST

Received: by (4.0/SMI-4.0Beta)

id AA13341; Sat, 28 Jan 89 22:20:19 PST

Date: Sat, 28 Jan 89 22:20:19 PST

From: Vaughan Pratt <coraki!pratt@Sun.COM>

Message-Id: <8901290620.AA13341@>

To: dke@sail.stanford.edu

Subject: A16

Cc: coraki!pratt@Sun.COM

n	An	wall secs	cache hits	cache calls
13	6405031050	455	12649463	22757106
14	61606881612	2388	61337863	124032186
15	602188541928	13013	308321165	681140900
16	5969806669034	74844	1725643824	4147489672