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Abstract—Given an m-dimensional random vector or contingency table, the number of distinct hypotheses of
independence is discussed and asymptotic formulae are obtained by using the saddlepoint method. There is
one ‘exhaustive” hypothesis corresponding to each class partition (with one exception) of the m dimensions.
Both the exhaustive hypotheses and mixed conditienal/marginal independence hypotheses are enumerated.

1. INTRODUCTION
Before reading this introduction it is advisable to read the definitions given in Section 2.

Multidimensional contingency tables occur frequently in medical and sociological statistics up
to high dimensionalities and random vectors are even more widely encountered. For the sake of
definiteness I shall word the discussion entirely in terms of contingency tables.

To simplify its analysis it is important to break down a given table into statistically
independent parts, or approximately independent parts, if possible (although in the past
breakdown into dependent parts has been customary). The problem of designing an efficient
search for such a breakdown is unsolved and it is not the purpose of this paper to attack this
problem, but one method would be to consider every possible breakdown and to compute a
significance criterion for each possibility. (A Bayesian approach to this problem has been
given[8].) It may not be sufficient to break the dimensions of the table into pairs of sets, and then
to break up the sets further, as in a dichotomous dendroidal search strategy, because, although
the independence of three tables does imply pairwise independence, it is more informative to
have a statistically independent breakdown into three tables than to have only a partial
breakdown. Hence an exhaustive search might be necessary although there may be more
economical methods that have only a small chance of missing an ‘optimal’ breakdown. As a
preliminary guide to deciding what kind of search to make it should be useful to know the number
of possibilities because the running time of the program, and the amount of output, can then be
better estimated. This rather obvious point seems to have been ignored or overlooked in the
literature, presumably because the techniques for searching for independence have not yet
become systematic, and have been as much intuitive as scientific. It has however, been known for
some time that there are many hypotheses of independence and conditional independence for
multidimensional contingency tables of high dimensionality: see, e.g. [9, 12].

The combinatorial problem of enumerating the possible hypotheses of independence for an
m-dimensional table is the topic of the present paper, and asymptotic formulae are also given, but
we do not deal here with statistical tests of significance. The immediate relationship to
exponential or Bell numbers is pointed out. The number of possible hypotheses grows rapidly
with m and the asymptotic formulae provided give results of considerable accuracy.

We shall not consider the even larger number of hypotheses of the vanishing of ‘interactions’
of the second and higher orders, although these can be considered as a kind of generalized
independence especially in virtue of their connections with maximum entropy. (See e.g.
7,13, 171.)

2. DEFINITIONS

Consider an m-dimensional (m-way) ‘population contingency table’ with cell probabilities
plis iz, ..oy i) (1 =i = I}). When one or more ‘coordinates’ is ‘summed out’ we write an asterisk
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in the corresponding place in the notation, e.g.

I, I,
_2] 2, Plinbays ) = P (00, %, s % sy ).

The various hypotheses of independence that we shall consider will not involve the breaking up
of the table along any of its m directions, so that there will be no further mention of the symbols
T, I, . .., I» in this paper.

Two or more mutually exclusive subsets of the m directions are said to be marginally
independent if the population probabilities factorize in the obvious way; e.g. if m = 10, then the
subsets (2, 5), (3,6, 10), and (4,7) are marginally independent if

p(*, !‘2, 1':3, l‘..4, i5, i(;q i?g *g *; ilﬂ) = p(*-! ']:29 *s *s iﬁe *9 H’ >-<, *9 *
0 10, 6 sy %, )

R P8 %%, L ¥ i, % 4, %)

for all values of ia, i3, i4, is, ls, i7, and iio.
On the other hand the mutually exclusive subsets will be said to be conditionally independent
if, for all values of the coordinates we have the natural factorization; e.g. if

p(i]’ iz’ ia’ i4’ L e i“‘) = p(il’ iZ! *, %, ES, wy %, i&i, f‘), *)
X p(ila *9 ff’n *! iy ifn, *, is, fg, !Im)
X p(ih *y i4-_| ok, i?, [.3, ig, "‘)

- [p (ils *3 *7 *7 *7 *5 *3 E.851 fg, *)]29

for all values of iy, i2,..., {10, then the subsets (2,5), (3,6,10) and (4,7) are condttlonalh;l
independent, given the components or directions number 1, 8, and 9. _

If the mutually exclusive subsets are exhaustive of the m directions, so that the remaining
directions constitute the null set, then both the kinds of independence just defined reduce to the
same thing, which we may call exhaustive independence. Hypotheses of this kind may be thought
of as a special case of marginal and conditional independence in the degenerate case where
number of ‘omitted’ directions happens to reduce to zero.

Finally there are mixed (conditional [marginal) independence hypotheses, conditional with’
respect to s’ of the omitted directions and marginal with respect to the s remaining ones. H
again it will be convenient to think of the degenerate cases, where s' or s or both are zero, a§
special cases. i

For an m-dimensional table, let the number of exhaustive independence hypotheses be
denoted by B.. Clearly, if we put 8, =0, we have

where b, is the number of ways in which m different things can be distributed into m or fewer
‘indifferent [indistinguishable] parcels’ (where a parcel must contain at least one object), ol
the terminology of [19]. A more classy description of b,, is given, e.g. by [3, p. 103] as the numb
of ‘class partitions’ of a set of m members. The numbers b,, are known as exponential numbers
Bell numbers. The former name presumably arises because of the generating function (e.g.
Proposition XXIV], or (3, p. 103]).

> bnx™[m!=exp(e*)le
m=0
if b, is defined as 1. For completeness we draw a few deductions from (2), in (3)—~(6), though nong
of these is new. (For an extensive bibliography, see [10].) Of the three obvious ways of expanding

(2), as
H exp (x"/n), E (x +—— ) /n!, and %Zﬁe"x/nl,

n=0



Number of independence hypotheses 74

the third is the most interesting, and leads at once to

=k
= 2] 3
Therefore (e.g. [1])
2m--| 3m—1
. ym—1
b.e=1 +E—I+ X + -
=T e g s
R

so that, by reversing the order of summation, we see that[16]
bnT = bn1—1‘¥ (rn.{7 l)}7n|—2“+ (Fn,é_ ]t)tﬁn43'+ ""+’bﬂ- (4)

Now one of the definitions of the Stirling numbers of the second kind [11, p. 168] is that they
satisfy the identity

" =G .8 Prle= %20~ Qir—2+- 5)
Therefore, from (3) we have|[2]
b"l = : FYI(lj + ‘Cfﬂltz) + v + '\r f?'l{ rn‘)' (6)

The numbers &, = (A"0™)/n! are tabulated in [11, p. 170] up to m =12 (n = m), and in [5,
Table XXII] up to m = 25. The values of b,, up to m =20 are given in our Table 1, uptom =5l in
[15], and up to m =74 in [14].

Table 1. Values of b,,, and of the first three terms of the asymptotic expansion

The last column gives the ratio of the sum of the 3 terms divided by the exact value.

m bm = Bm + 1 First term 2nd term Jrd term Sum Ratio

1 1 0.934 0.088 0.016 1.037 T0aT
2 2 1.870 0.1206 0.0116 2.0023 1.0011
3 3 4,7583 0.2301 0.0129 5.0013 1.00026
4 15 14. 440 0.5531 0.0184 %3011 1.00076
5 52 50.412 1.586 0.030 52.028 1.00054
3 203 197.772 5.250 0.046 203.067 1.00033
7 877 857.590 19.589 0.031 B77.210 1.00024
8 4140 4060.020 81.050 -0.300 4140.770 1.00019
9 21147 20785.719 367.198 -2.848 21150.0689 1.00015
10 1 15975 114204,254 1803.8 =197 115988.3 1.00011
11 6 78570 669229.55 9531.6 -128.3 678632.9 1.000093
12 42 13597 41 60921 53831 -835 42 13918 1.000076
13 276 44437 273 28564 3 23177 -3555 276 46186 1.000063
14 1908 99322 1888 94654 20 52988 -38159 1909 09438 1.000053
15 13829 58545 13695 47122 137 45573 ~271615 13830 21079 1.000045
20 5172 41582 35372 5.13680(13) 3.658(11) -8.60(9) 5,17252(13) 1.000020
30 8.46749 01451(23) 8.43259(23) 3.59226(21) -9.,522(19) 8.46756(23) 1.0000083
50 1.85724 26877(4T) 1.853462(47) 3.8948(44) -1.109(43) 1.857246(47) 1.0000017

b = 104801 42147 b = 828648 69804 b = 68 20768 06159 b = 5383 27422 05057

16 17 18 19
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The combinatorial interpretation of (6) is that %, is the number of partitions of m objects
into precisely n indistinguishable parcels (cf. [18, p. 91]). An asymptotic expansion for b, is

discussed in Section 5.
For an m-dimensional table, let v, denote the total number of mixed conditional/marginal

independence hypotheses, including the degenerate ones. The number of these having r ‘omitted’
directions of which s are ‘summed out’ is clearly

)

Therefore the number with r ‘omitted’ directions is, in all

500 (e

Therefore (remembering (4) and that 8, =0), we see that the total number of purely marginal
independence hypotheses, which is also the number of purely conditional independence

hypotheses, is

Ll Sy SRS e T

= Bt =2™ = Brusr — 2" = 1), ©)

Therefore

Yo = Bon + (’i”)zs + (’;")223,,h2+ P ( iz 2)2'""'252

m;=

:bm+(”1”)zbm.1+(g’)2zbm-z+---+( " )2""2b2+( L )2”“'b.+2’“bu

m—2 m — 1
B m MY . owm
[1+(1)2+(2)2 + +2 ]

m

i (_] )2b,,._.+- ) (10)

Therefore
Ym +3" = {m !(g(z'”)-i— (T)Z(m e 1)!66(3”“‘)

% (’;)gz(m —~ DG+ ¢ } exp (e’ —1)

r

where €(z") means ‘the coefficient of z" in’. Therefore

2
VYu +3" = m!{(g(z"’)Jr%%(zm_‘)+%—!f6(z'""2)+ . -}exp (e* —1)

= m!%(z’"){[l +%+2;7;+ - } exp(e’ — l)}

=m!€(z")exp(e’ +2z —1).

In other words

ﬁ m: )2 - . 3z
ok exple® +2z~1)—e (11)
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which may be compared with
— B z 2
Z 2 "=exple’ —1)—¢" (12)

The values of y.. for m =1(1)10 are given in Table 2.

Asymptotic theory. Asymptotic values of considerable accuracy can be obtained for g8,. and
I by using the saddlepoint method. The results are of some mathematical interest although
perhaps not for the application to contingency tables. The saddlepoint method is applied in [4] to
the problem of estimating the mean of n independent identically distributed random variables
and the approximation is carried there to the second term. The calculation of the third term was
given in [6]. The results of the heavy algebra in that work can be used for our purposes although
our problem is different,

[15] and [3, pp. 104-108] consider the asymptotic expansion of b,, as an example of the
saddlepoint method. Our method is close to that of the former authors but it seems worthwhile to
record it because (i) it illustrates the general formulae of [6] and this makes the details more
straightforward, (i) the present results are taken to greater accuracy, and (iii) the method applies
readily to Y.,

By (2) and (11) we have

_ m! ?gexp(ez)dz __m! [exp(e +22) (13)
211_!-6 Zm+l £l m 27718 2,m-!—l

where the contours encircle the origin once in the positive direction. The integrands are of the
form exp f(z) and exp g(z) where

fz)=e"—(m+1)logz, glz)=e " +2z—-(m+1)logz (14)

Saddlepoints occur where the derivatives f'(z) and g'(z) vanish. Although there are an infinite
number of saddlepoints, the important ones occur on the real axis, at say z = ¢(m)= ¢ and
z=n(m) =7 respectively, if m is not too small. By the ‘important’ saddlepoints we mean the
ones where the absolute values of the integrands (which are equal to the exponentials of the real
parts of f and g) are maximal along suitable contours. [3] gives this for b,, and the comment is
equally valid for ... Moreover, again as pointed out in [3] for b.., we can in both cases replace the

Table 2. Values of v,, and of the first three terms of the asymptotic expansion

The last column gives the ratio of the sum of the three terms divided by the exact value. The ‘first term’ is
C,”~3", the second and third terms are C, g, and C,.”g, respectively.

m ¥ First term Znd term 3rd term Sum Ratio

2 1 0.359 0.535' 0.085 0.979 0.979
3 10 7.886 1.805 0.244 9.935 0.9935
4 70 62.563 6.539 0.739 69.841 0.9977
5 431 402,476 25.742 2.414 430.632 0.99915
6 2534 2414.532 110.055 8,541 2533,128 0.99966
7 14820 14276.477 508,820 32,647 14817.944 0.99986
8 88267 85598.026 2530.816 134.239 88263.081 0.999956
9 5 42912 5 28850.177 13472.523 590.002 5 42912.702 1.0000013
10 34 75978 33 96912.02 76393.79 2754.97 34 76060.78 1.000024
20 - 3.9923532(15) 3.95997(13) -1.42(10) 4.0319529(15) 3

30 - 1.1710192(26) 6.7833(23) -7.75(21) 1.1777249(26) &

50 - 5.4792788(49) 1.51576(47) -2.860(45) 5.4944364(49) b
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contour by a line through the main saddlepoint and parallel to the imaginary axis. The real
saddlepoints are given by the equations

sﬂ%{m+ﬂ,n=M&Uj”—ﬂ (19)

3

each of which has a unique positive root. These transcendental equations can each be solved
iteratively without meditation by substituting the ‘old’ value into the right side, computing an
intermediate value from the equation, and averaging the old and intermediate values to obtain a
new value. The new value of course becomes the ‘old’ value for the next step in the iterative
process. An example that the reader might like to use as a check is n(8) = 1-44342422122 correct
to twelve significant figures (a curious-looking number). [15] uses the value of & with m decreased
by 1.
Now we have

b~ [ L pie- L ey (19

2e —g

where ¢ is slightly smaller than & (The radius of convergence of the expanded function is equal
to £) Thus

1 & i 3.3
b, =" R L(E) exp{om +1) -~y =y wo|fa, (1)
where
Kyzfril'i”(*]r)r(r*])z. (18)

£

The integrand now happens to be exactly the same as [6, p. 869] with m + 1 written for ¢ It
therefore follows from that paper that

bm W-Brn[(])(] +f1+f2+ i ) (19)
where
@ m!exp(e®)
B."= /27 (m + D€ +1)] (20)
1 2
fi -—m(ﬁh*ﬁ\a) (21)
f2= m(lﬁwﬂs +385A5" — 63043744 — 24X, + 105A.7) (22)
where
e T (=-D"(r— 1)
O )

The numerical approximations for m = 1(1)15 are shown in Table 1 from which it will be seen that
the third approximation is remarkably accurate. The formula for B, is equivalent to a formula
given in [3], but [3] does not give later terms explicitly. Also [3] is concerned with finding an
asymptotic formula for £ in terms of m, whereas our approach is to regard £ as readily calculable
and to regard it as a known constant once m is assigned, a method previously adopted in [15],
with the gloss mentioned before. [15], formula (3.8) gives fractional errors of 0-00057, 0-00017,
and 0-000033 for m = 10, 20, and 50 respectively. The manipulations required to obtain improved
approximations are implicit in their work but would be very heavy. The fractional errors of our
third-order approximations can be read off from the last column of Table I.
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The procedure for v, is similar, but when the factor m + 1 is taken out in the exponential, as
in (17), there remain some explicit occurrences of m within the brackets, in fact we now have

D (=D =29 (m 1)

A = |-7] ERy —27}2(!?’:1 i 1)—]]rf2 (24)
Yo + 37 ~ Cn (1 + g1+ 82+ ) (25)
where
m!exp (’”—Hun 73)
Cm(U) = n (26)

7" V27 [(m + D(n + D—297T

and g; and g are given by the right sides of (21) and (22) except that the A ’s are now given by (24).
Note that we have not rearranged the expansion in negative powers of m nor of m + 1 because
this would make the formulae more complicated. The results, given in Table 2, are again
strikingly good. That the three-term approximation to vs is better proportionately than that for Yo
must be because the error does not have a fixed sign. Where the error changes sign it has a
‘chance’ of being extra small.
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