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r
Gaussian coefficients, defined as T (qn-J-l) /0N (qd-l) for q # 1,
0 = M22 108

show remarkable similarities in properties to the binomial coefficients (n)
r

By giving a geometrical meaning to the Gaussian coefficients, the similarities
gain a natural interpretation. From this point of view, a systematic account
of some known results is given, together with enumerative proofs of less <

known relations.

1. Introduction

Definition and Notation

The Gaussian coefficient denoted by
'
n 1
(3,
is defined for all q # 1 and non-negative integers n,r as

-1 —r+l 3
(M, = (™D -D...( 1) vhen 0<r<n !

riq (q-1)(q2-1)...(qF-1) ’
L =1 when r =20, L
= 0 otherwise . (1.1) :

As the name shows, these rational functions were first studied by Gauss, who
discovered and proved some of their basic propertics. The relation of these

cocfficients to vector spaces over finite fields was discovered later,

together with their relevance to the study of partitions. A detailed

L
i

bibliography of earlier works (e.g. Jordan, Dickson) together with that of

'{
@'r

later work (referrad to in the following) is given in [1].

§

This paper aims to highlight the connection betwcen Gaussians and vector §

spaces and compare it with that between binomial cocfficients and sets. ;

| This point of vicew is also dominant in the papers of J. Goldman and G.C. Rota |
ARS COMBINATORIA, VOL. 17A (1984), pp. 325-351 i

|
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published in 1909 and 1970 ([2] and [3]).

The app;oéch in this paper is somewhat different. Instead of using
algebraic and analytical methods for establishing Gaussian identities and
then looking at limits as q+*1 to check the corrcsponding identity for
binomials, the starting points here will be the binomial identities, given
counting interpretations; we then attempt to arrive at generalisations which
throw light on the nature of vector spaces over finite ficlds. Admittedly,
this approach is less powerful than the algebraic generating function method.
and not quite as intuitive as the method of elementary counting applied to
sets as in [4]; nevertheless it gives intrinsic satisfaction where known
Gaussian q relations are interpreted this way and also yields relations

which seem to be new (at least not seen by me).

The notation used in (1.1) suggests the analogy between the Gaussian
- N(n-1)...(n-r+])

[:]q and the binomial (:) In fact, we may write (1.1)

1.2...r
as
[n] = iﬂn'l)---(qn-r*l‘ll_/ (q-1)...( ™1
T (q-1)T (q-1)
r ooy . r-l J i
=0 ] q/ M Jq (1.2)
J=1 i=0 =0 i=0

for allq#1 and 0<r<n.
Using (1.2) as the defining formula for [:]q, we have a definition valid

for all gq; when q=1 , we obtain the binomial (:)

In this sense the Gaussians may be regarded as generalisations of the
binomial coefficients,and identities established for Gaussians must yiecld

binomial identities for q=1

2. The geometrical meaning of the Gaussian coefficients

Theorem 1. Let V be a linear space of dimension n over the field GF(q)

q = ph (p prime). The number of subspaces of V of dimension r 1is given

by (3], -
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Proof. (For brevity we will omit now and in the futurc the subscript gq

whenever it is understood that the vector space is over the field GF(q)

Subspaces of dimension r will be referrcd to shortly as r-subspaces.)

Each r subspace of V can be specified by selecting a set of r
linearly independent vectors out of thc vectors of the n-space V which

n
has q'-1 non zero vectors.

. . . : n

Thus the first choice for a basis vector can be made in q -1 ways.

For each successive basis vector we must exclude vectors of the subspace
spanned by the basis vectors already fixed. Thus the number of choices is

1

@D @

However, the same r - subspace may be obtained by a different choice of
basis elements. By reasoning similar to the above,the choice of r

linearly independent vectors in a fixed r subspace can be made in

r r-l)

(@-D(Q-9...(q -q ways.

Thus the number of r subspaces of the n space V is

n r-1 n-r+l
- q -

n n n-1 (5) n_
(@199 )...(q"%-q" ) a2 (q-D...(
(qT-q"=4) (qF-qr=<) ... (q"-1)

a2 (@-1) ... (" -1)
r r{r-1)
where q(2) = q.q2...qr-l =q ¢ .

1)

Simplifying, we obtain [:]q as claimed. The tables calculated for
q = 2,3,4, and 5 of the values of [:]q for small values of n serve for

comparison with the well known Pascal triangle of binomial coefficients.
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Gaussian tables

n
4 =2 G, - rzo[:]
n=0 1 2 2 { % 1
n=1 1 1 2
n=2 1 3 1 S
n=3 1 7 7 1 16
n=4 1 15 35 15 1 67
n=5 1 31 155 155 31 1 374
n=6 1 63 651 1395 651 63 1 2825
n=7 1 127 2667 11811 11811 2667 127 1 29212
n=8 | 255 10795 97155 200787 97155 10795 255 1 417199
[s-5]

n=0 1 A 22 Ié?-
n=1 1 1 ) 2
n=2 1 4 1 6
n=3 1 13 13 1 28
n=4 1 40 130 40 1 212
n=5 1 121 1210 1210 121 1 2664
n=6 1 364 11011 33880 11011 364 1 56632
n=7 1 1093 99463 925771 925771 99463 1093 1 2052656
n=8 1 3280 896260 25095280 75913222 25095280 896260 3280 1 127902864

A22168 & Lo

n=0 1 1
n=1 1 1 2
n=2 1 S 1 7
n=3 1 21 21 1 44
n=4 1 85 357 85 1 529
n=5 1 341 5797 5797 341 1 12278
n=6 1 1365 93093 376805 93093 1365 1 565723
n=7 1 5461 1490853 24208613 24208613 1490853 5461 1 51409856
328
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n=0 1 1
n=1 1 1 2
n=2 1 6 1 8
n=3 1 31 31 1 64
n=4 1 156 806 156 1 1120
n=5 1 781 20306 20306 781 1 42176
n=6 1 3906 508431 2558556 508431 3906 1 3583232
n=7 1 19531 12714681 320327931 320327931 12714681 19531 1 666124288

These tables exhibit the similarities and differences between binomials and

Gaussians. Three basic properties of binomials immediately apparent in the

Pascal triangle are
(i) Unimodularity: (:) > (rfl) for r < X%(n+l)

and (:) < (rfl) for r > X(n+l) .

(ii) Symmetry: M = (o) -
A . R n n-1 n-1
(iii) Pascal's recursion: () = (_)) + (' )

For the Gaussians (i) and (ii) are valid, while (iii) is not. We shall

prove in the following section that, instead of (iii),we have

1 PR Gty AR e P (3.1)
or [7], = "Ny PR A (3.2)

The relations (3.1) and (3.2) were known by Gauss and are easy to
verify algebraically, but we are going to give their combinatorial
interpretation,as indeed this is the program for all the relations
discussed here. Furthermore, the next best known property of the
binomial coefficients is
w JM-2.

r=0
The Gaussian tables show the corresponding sums in the right hand column.

These sums are called Galois numbers, and are defined as
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For binomials, where q=1,

n n-1 °
This well known recursion formula will be given an interpretation suited
for generalisation. For a general q , Gn increases more rapidly with n
and we have
n-1

G =26, + (@ DG , (3.3)

as a recursion relation.

Before proving (3.1), (3.2),and (3.3),wc settle the questions of
unimodularity and symmetry for Gaussians. Unimodularity.is verified in
exactly the same way as for binomials. The case of symmetry is more
interesting. For binomials we have:

M ="

r n-r
because,when choosing r out of a set n , we choose simultancously n-r

clements to be left behind. The corresponding interpretation for Gaussians

is slightly more complex,and we give two alternative interpretations.

(a) Orthogonal complements: Fix a basis and coordinate system. We define

the i = . = ..
e inner product of two vectors X (xl,x2. ,xn) s Y (yl'y2" ,ynL
in the usuwal way
E
P = XY,
g1 11

Two vectors are orthogonal if their inner product is zero. Let Vr be an
r- dimensional subspace of Vn (dimension n). The orthogonal complement
of Vr is the set of vectors orthogonal to all the vectors of Vr .

These form a subspace of V_ of dimension n-r . Thus there is a bijection
from the r-subspaces of V_ = to their orthogonal complements which are

(n-r)-subspaces
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can be mapped to (n-r)-

(b) Duality: Alternatively, r-subspaces of Vn

ii subspaces of the dual space of Vn defined by the qn linear

transformation of Vn to itself. However, for comparative interpretations

of binomial and Gaussian relations, (b) is less suggestive than (a).

4. Basic relations of binomials and Gaussians

The basic difference between binomials which count subsets and Gaussians

which count subspaces manifests itself in the greater complexity of inter-

section relations of subspaces as compared with subsets. The basic theorem

which encompasses most situations will be stated and proved in the following.

Theorem 2. Let V be an n -dimensional linear space over GF(q) , R and

F fixed subspaces of V of dimensions r and f, respectively,and Fc R .

The number of k-subspaces which intersect the subspace R exactly in

F is
_ n-ry (k=£)(r-1)
Nk.r,f - [k—f]q (4.1

(Note: The number of k-sets intersecting a fixed r -subset R of the

n-set Sn in a fixed f-set F is

- n-r
‘ (k-¢
since therec are k-f elements to be chosen to complete the fixed f-set and
these must be chosen out of n-r elements as the chosen sets exclude all i
. '
elements of the set R different from those 1n F .) .
1
v

Proof. Choose a basis for V by beginning with a set
X = {xl,xz,...,xf} 4
of basis vectors spanning F , completing it to a basis for R by the i
s
independent set g
€R (i=l,....g),(g=r-D) *

Y = Ly ,ypeeee .yg}, Yy

and finally by choosing a linearly independent set

= {zl,zz,....zs} (s = n-1)
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Rin it

to complete the basis.

e The sets X,Y,Z, are to span spaces mutually orthogonal F,G,S.
Let K be a k-subspace of V such that

KN R-=F.

A basis for K may be chosen by

i completing the set X with the

// g linearly independent set
G

W= (wl,w2,.",w£} where £ = k-f

Each element w, of W belongs to the space spanned by S and G, and

hence has a unique decomposition

~ |

w, =z,
- i i

Yy where z, €S and Y4 €G .
Moreover the set of the components
(z).2 veeeazy)

must consist of £ lincarly independent vectors. For suppose that some linear

combination of the Zi components vanishes; we have then a vector with all
its basis components in G , contradicting the requirement that KN R = F.
Hence KNG-=0 . Converscly, any linearly independent set of & vectors

belonging to S gives rise to a linearly independent set

{z. + yi} v 74 €S, Y; € G (i=1,...,%) ,

i
whatever the vectors 71 are. The set {;;} need not be independent.

Each admissible k-space determines uniquely its Z2 component, where

21 c S and is of dimension & = k-f .

The number of &- dimensional subspaces of S is [i] . Each of these
gives rise to a Z, component of a class of admissible k-spaces. Each
k-space belonging to the same class is determined by the choice of the
{;l} set, y, €G (i=1,...,%) . It is clear that once the Z, component

is fixed, the set of k-spaces determined by it is independent of the basis
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Gi} (;i €s, i=1,...,2) chosen for it. It is also clear that different
choices for the (;;} components to complement a given {;;} basis give

b rise to different k-spaces; for, if z; ¢ ')71(1) is a basis element of the
k-space K , the vector E; + ;;(2) is in K if and only if ;;(2) = ;;(1).

Since the number of vectors (including the zero vector) in G is qg ,

qg ways and so the same Zl component determines

s)l

‘ each of the £ basis vectors of Zl ch be complemented independently in
‘ (a
|
\

admissible k-spaces. Thus the number of k-spaces intersecting R exactly

in F is

51e% .

Setting s = n-r , £ = k-f , g = r-f, gives the result (4.1).

We write down now important special cases of (4.1).

(a) Number of krspaces including a fixed r-="space

Here F = R; hence the number is
n-r
(0
In particular, the number of k =spaces containing a fixed vector is
n-1
(o]

’ (b) Number of k —spaces Kk for which K 0 R = 0 (thc null space)

‘.-' Here f =0

hence the number is
kr

-
"

By abuse of terminology we will say that the K spaces are "disjoint'" from R .

Iq

(c¢) Number of k -~spaces which do not contain a given line

| This is a special case of (b) with r=1; hence the number is

' n-1, k
| Cy Ja X
‘ (d) Number of complementary spaces of an r ~subspace in V E
| Here we want all the subspaces of dimension n-r disjoint from a i
| fixed subspace R of dimension r . This is again a special case of (b), :
| ¥
| i
i 333 |
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where k = n-r; hence the required number is
r{n-r)
q .
(Note that when q=1 , i.e. when we deal with sets instead of spaces, we

have just 1 complementary set.)

We are now ready to interpret relations (3.1) and (3.2) of the previous
section by recalling first the combinatorial interpretation of the Pascal
recursion formula (iii) as follows. The r-subsets of an n-set fall into
two classes; those which contain a fixed element and those which do not

contain it, the number of the former being (:::) and of the latter (n;%

Similarly, we regard the r-subspaces of an n-space. Those subspaces
which contain a fixed vector (1-dimensional subspace) are

[:::] in number, by (a).

The r-subspaces of V which do not contain the fixed vector in question

number
(" lar (from (c))
lence
n n-1 r.n-l
(7] = (oo, +a" (")

Now,using the symmetry relation, we obtain

n _ (n-1 r, n-1
g = Logd w9l )s
and, substituting k = n-r , we have

B I G IR i

as claimed in (3.2). This last formula can also be given a dual
interpretation. The first term on the right hand side gives the number
of k-subspaces which are contained in a fixed (n-1) - subspace
(hyperplane) of V . Since the left hand side counts all k-subspaces of
V , the second term gives the remaining k-subspaces. Hence we have

another useful relation:
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(e) The number of k-subspaces not contained in a fixed hyperplane of V is

-k n-1
. i

In particular, qn-l is the number of lines not contained in a fixed

hyperplane. This follows also from (d).

Next we prove the recursion formula for the Galois numbers Gn stated

in (3.3). We note first that, if q=1 , Gn = 2" . This can be interpreted
by recursion. All subsets of an (n+l)-set are obtained by considering

first all the subsets of one of its n-subsets and then joining the left-out

element to each of the subsets already accounted for. Thus,so for q=1,

Gn+l : ch
In the case when a > 1, we must modify slightly our reasoning.
Let v be a fixed vector in the (n+1)-dimensional vector space
Vn+l . Then
Gn+1 = Nl ! N2'

where N1 is thc number of all the subspaces containing v and N2 the

number of the subspaces not containing v .

Since the number of k -dimensional subspaces of V.41 CoOntaining

v is [le] and thosc not containing v is [:]qk , we have
n;l n ? n. k
G,y = 2 L1+ Ll
n+l k=1 k-1 k=0 k
n n n
k n, k
= 1)+ Def=c « J[Id" . (4.2)
k=0 K ko K N s K

The second term on the right hand side can be evaluated by interpreting it

as the count of incidences of all points in Vn with the subspaces of V .
n

Another way of writing down these incidences is obtained by counting

first the subspaces containing a fixed non-zero vector.

By (a) in section 4, a fixed vector is contained in [:::] k-subspaces

and hence in
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E n-1 nfl n-1
3] = [,']1=¢ subspaces.
kel K1 e KT el

Since there are qn-l non-zero vectors in Vn » this gives
n . .
(q -I)Gn_l incidences.
To this we must add Gn incidences of the zero vector,which is contained

in all the subspaces of Vn . So
n
n, k n
kZo[k]q = (@-1G _, + G
Substituting this in (4.2), we obtain the recursion

_ n
Cpey = 26, * (a"-1)G__) of (3.3).

S. Summation identities

Some of the identities interpreted in this section have been known fo
some time (see [1] p.37,51), but proofs will be given here by counting, an
this method is also extended to other interesting Gaussian summation

identities which seem to occur as abundantly as binomial identities.

The binomial identity dealing with addition of the elements in a

diagonal of the Pascal triangle is

One interpretation which adapts easily to Gaussians is the following.

Arrange the clements of an n-set in a fixed order

aa,...a ...a .
Keeping this natural order in the k-sets selected out of the n-set,we put

those sets in the same class for which the last element is a (k< r<n)

The number of k-sets in this class is
r-1
()
Summation of the numbers in each class for k € r < n gives the identity.

The corresponding relation for Gaussians is
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n
r-1, r-k n
P Gopla ™ = ) - (s.1)
r=k
This relation was known by Gauss. We prove the relation by counting the

subspaces of an n-space V . Begin by arranging fixed subspaces

Mk'Mk+l""'Mn = V of dimensions k,k+l,...,n, respectively, such that

Mk < Mk*l c...c Mr c...&« Mn

Taking Mk as the first k -dimensional subspace,we proceed by finding all
k- dimensional subspaces contained in M, . with the exception of M-
The number of these is

[kfl]q by (e) of section 4.

[k;l] 1)

(This is of course equal to
Suppose now that all the k-subspaces contained in M!__l have alrcady
been counted. Since Mr 1 is a hyperplane of M., we can use (e) again

to find the number of k-subspaces included in M. but not in M, _, .

This is [::i]qr-k . Continuing in this manner,we finish the counting
by considering the k -spaces contained in V = M but not in M _, .

This proves (5.1).

Another well known binomial identity is the Van der Monde convolution

k
rgo(ﬁ)(k?r) ="M

which can be interprected by counting the k- subsets of an (m¢n) - set
which is cut into an m-set and an n-sct and the chosen k -sets are
obtained by selecting r from the first part and the remaining k-r
from the second part, where r 1is varied from 0 to k . The Gaussian
generalisation of this is
k
rgofillkﬁrlq

(k-r)(m-r) . " (5.2)

This can now be obtained easily by considering the vector space
V=M+N,

where M,N, have dimensions m,n, respectively. By Theorem 2, the number
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of k-subspaces of V intersecting M in a fixed r -dimensional

subspace is

(m+n) -m q(k-r) (m-r)
i k-r °
Since there are [:] r-subspaces in M , the number of k-subspaces
intersecting M in some r-space is
m 0, (k-r)(m-r)
(" Ja :
Summing for r=0 to k yields (5.2).
(Note that,unlike the Van der Monde convolution,(5.2) is not symmetrical
in m and n; we can have various equivalent forms, using the

symmetry relation of the Gaussians))

An even more general form of the Van der Monde identity was proved

by Bender in [S].

A less known binomial identity similar to the convolution formula is

Ty - 1
ER 2k+1

Interpretation: An (n¢l)-set is arranged in fixed order. The 2k+l sets

chosen out of it are classified according to the "centrally" placed

elcment; thus, 1if element (3 +1) is central in the chosen (2k+1)-set

wherec k < j < n - k , then there are k clements of a lower and k
h clements of a higher order in the chosen sct. The number of sets in
this class is
)
Summing for all the admissible j values, the number of all (2k¢l)-sets

of the (n+1) set is obtained.
Generalisation for Gaussians.

(3-k)(k+1) n+l (5.3)

n-k . .
Jgkrilt“;’lq = Doy

Proof: We proceed as for the proof of (5.1). Consider the series

of subspaces
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Mk+chk+2c CMJ CMJ*_‘LC c"ml-k ,

where the subscripts indicate the dimensions. We count the (2k+1)-

dimensional subspaces of the (n+l)-dimensional space V by considering
first the (2k+1)-dimensional subspaces containing Mk+l , next the (2k+1)-
dimensional subspaces containing the (k+l)-dimensional subspaces of
Mk+2\Mk+l'and so on; finally, we count the(Zktl)—diwensional subspaces

containing the (k+l)-dimensional subspaces of

...% Y Mnﬂ_k\Mn_k . In this way all the (2k+l)-

dimensional subspaces are accounted for.

Using (#) of section 4,we find that the number of (2k+1)-dimensional

subspaces contained by MJ”_\MJ is

q(J*l)-(k+l)[(j'l)-1] = 37K

j
[ (ke1)-1 ]

k
By Theorem 2, the number of (2k+l)-dimensional subspaces of V intersecting

M in a fixed (k+l)-subspace is
J+l

(n+1)-(j+1) ] ((2x+1)~(k+1))((J#1)-(k¢1)) _ [n-j]qk(J-k)
(2k+1)-(k+1) k .

Hence, the number of (2k+1)-spaces containing (k+l)-spaces of SJ#I\SJ is

(1M1 )

This gives the general term of the sum on the left hand side of (5.3),
where j varies from k to n-k .

The same argument produces the slightly more gencral identity

B (g-k) o e (5.4)

Jgk[i] [n;.J]q( [koﬂ.tl]

As a final example of a binomial summation easily extended to

Gaussians, we consider
n
n-k
I @ = (2~
r=k

This yields the Gaussian relation
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n
Ty 0 n
P GIGY = )6, - (5.9)
r=k
The interpretations here are almost identical. For sets: divide an n-set
into three parts, one of the parts having fixed cardinality k .
For spaces: divide an n-dimensional space into three mutually orthogonal

subspaces, cne of fixed dimension k .

6. Alternating sums. The Inversion Theorem

A great number of well known binomial identities involve sums with
terms of strictly alternating signs. There are corresponding alternating
Gaussian sums. To show the connection between these and the binomial
sums, it is necessary to generalise the Inclusion-Exclusion principle,

which is basic to the binomial alternating sums. [4].

G.C. Rota, in his fundamental paper [6],gave a general treatment of the
generalisation of Mobius inversion (known as such in number theory), where
sets, subspaces, partitions, divisors,are treated as locally finite
partially ordered sets. Rota defines an algebra of locally finite P.O.
sets,and the different P.0O. sets are treated within the framework of this
algebra. Bender and Goldman in their expository paper [7] treat the
particular case of linear spaces in a simple elegant way.

For the sakc ot completencss in this paper,the following theorem
will be stated and given an inductive proof by the use of tools not

going beyond those discussed in the previous sections.

Theorem 3 (Inversion). Let V be a finite lincar space over the finite
field GF(q) , the dimension of V being n . Denote by S,T, any of the
subspaces (including V and O ) of V, and define the functions

£(S) , g(S) , h(S), on the subspaces with the following properties.
g(s) = ] £(T) and N(S) = § £(T)
=S =5

Then, for all ScV,
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(@) £(5) = [ uW(Mg(M and (b) £(S) = ] u(Mh(T
= =5

where

= k ()
w(T) = (-1)°q'2’ , k = dimS - dimT for (a) ,

and u(T) (-l)kq(’z‘) , k = dinT - dimS for (b)

L]

Note (i) For our purposes, f,g,h, are usually integer-valued functions,
but they may represent mappings to any ring.
(ii) The set of subspaces of V , partially ordered by inclusion ,
has V for a natural upper bound and the 0-space for a
natural lower bound. However, upper and lower bounds Smax
and Smin may be imposed by defining f(S) = 0 for
S>o Smax and S < Smin . The sums defining g(S) and

h(S) are finite and hence well defined.

Proof.

(a) Let the dimension of S be m , and denote by S(k) any subspace
of S of dimension m-k . (In particular s(0) . S.)

Then
3 (k)
g(S) = L £(T) = £(5) + [ €M =€)+ § I £5
TcS T<S

k=1 5(k)g

) (6.1)

Hence

fs) - gs) - &1 sty (6.2)

k=1 S(k)CS

k
More generally we may apply (6.1) to any S( ) subspace of S, and hence

obtain
m .
es™) = gy - 1 ;oestt) . (6.3)

i=k+l s(i)cs(k)

Substituting expression (6.3) for k=1,2,... into (6.2), we obtain at some

stage
kol (1)
£(5) = g(s) + I v(i) ; g(s* ") + R, (6.4)
1=l (1)
where the remainder term
341
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We note here that the coefficients of the g(s'1’) and £(s‘Y)) tems
only depend on the structure of the P.0. set of subspaces considered and
not on the functions £ and g . Furthermore, another application of
(6.3) to (6.4) affects only Rk-l and leaves the first part unchanged.

Write

m N
Ry = 6 Lofs™h e 5 T 1 sstt)

s s(1:)cs i=k+1 S(i)cs(k)

Apply now (6.3) to each f£(s\¥)); substitute into (6.4) to obtain
k-1
(CRFCRE O s v R g(s™

) o+ (6.5)
i=1 i " g
S$*'"'es S''es

where Rk is the new remainder term containing f(S(i)) terms for

i =k¢1 to m.

We can write now u(k) = Cy » write down (6.5) in the form
ko (1)
g(s) = £(5) - Ju) I s -R_, (6.6)
i=1 S(1)CS
(k)

) in (6.1) to (6.6).
(1))

and compare the coefficient of (S

Note that Rk only contains f(S terms for k ¢+ 1< i<m,

Hence f(S(k)) contributes to the sums g(S(i)] for 0<i<k only.

Let S(k) be a fixcd subspace. Then f(S(k)) contributes to

(1) (k) ES(:i)

g(S'"") if and only if S

By (a) in section 4, the number of 5(1) spaces (spaces of

(x)

dimension (m-i) of S , containing S » is given by
m-(m-Kk) o ko (k

[(m-i)-(m-k)] a [k-i] - [i]

(k))

Thus the contribution of f(S to the term

i §oss™) as wwrh,
s't'es
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(k))

and so the coefficient of f£(S contained in (6.6) is

k
- I a ik,
i=1

(k))

and this must be equal to 1, the coefficient of f£(S in (6.1).

Hence k _ X
1+ Jui] =0.
i=1
Writing W(0) = 1 , we can write down this last equation as a recursion
formula for p(k) . Since [:] =1, we obtain
_ ksl
HR)= - (] - (6.7)
i=0
Using this to evaluate u(k) , we obtain
o) =1, uw(1) = -1, u(2 =q, u3 =-q° =-q
We continue by induction, assuming that, for 0<i <k,
i
= i
i) = (-nl2) .
(Since (;) =0 when i =0 or 1, this is also true for those two values.)

Using (a) of section 3 and the inductive hypothesis, we write (6.7) as
k-1 i
- i k-1 i k-1
u(k) = -1 - ] (- q(a)([i_l] va [y ]) . (6.8)
i=1
All terms on the right hand side, cxcepting the last one,cancel out and

we obtain

q

k-1 1 ke K (&
T= (0 o2 E ) - el

as claimed.

(b) The proof is similar to (a). The modification is that we denote by

s(k) containing S and of dimension m+k . We have

any subspace of V

n-m
h(S) = ] £(T) = £(S) + JE(T) = £(5) ¢+ ] ) f(S(k)) . (6.9)
=6 6 k=1 s(k):s
Then, for k = 0,1,2,...,
n-m
es™®) = nis™®y - ) estt)y. (6.10)

i=k+1 s(i)as(k)

After successive substitutions,
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k-1 (1)
£5) = h(s) « Ju) [ n(stty +Rm (6.11)
=1 )¢

with a remainder term
n-m

(1)
R, = 16 I £,
i=k “o(1) ¢

Corresponding to (6.6), we have

k
nes) = £5) - S ui) § hestihy - R, - (6.12)
i=1 S(i):S
Here f(S(k)) contributes to h(S(i)) if and only if the subspace
S(k) > S(i) , where S(k) R S(i), are subspaces of dimensions m+¢k , mei,

respectively, both containing S .

Hence we must determine the number of (m¢i) - dimensional subspaces of
an (m+k) - dimensional space which contain a fixed m-dimensional subspace.

By (a) of section 4, this is

(m¢k)-m| _ 'k
(m+i)-m] - [i]

Thus we obtain for y(k) the same recursion formula (6.7) as for ;{k),

k-1 K
u(k) = - T uG)(j]
i=0
Hence
k
b = (-1q'?
In (a), k = dimS - dimS(k);
tn (), k = dins'® - dims .

This completes the proof.

The arguments used in the proof are valid for q=1 , i.e.,when subsets
instead of subspaces are considered; we obtain (k) = (-l)k and
u(k) = (-l)k . The result gives the Inclusion-Exclusion Principle as a

special case.

Let 2 be a set of objects and P a set of properties. Let the
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(1)

variables S,T, represent subsets of P, and use the notation §
for subsets of P consisting of i properties. Denote by f£(S) the
number (or more generally, the combined "weight") of those elements of Q
which have exactly the properties S; by h(S), the number (weight) of
elements of  having at least the properties S; and by g(S) those
having at most properties S. Hence h(S) = [ £(T) and g(S) = J] £(T),
=3 =S

as before. The inversion formula for h(S) gfﬁes

£5) = | (-n¥h(m, (6.13)
=S

where k = |T| - |S|
In particular, if S = ¢ (the empty set of properties), h(¢) = |Q|,
where Q@ is the whole set of objects, since there is no

restriction on the objects. The relation (6.13) can then be written as

£€o) = 2] - § nestYy . % hest?y o.e o1 Pluer.
S(1) s 2)

This last equation represents the classical Inclusion-Exclusion principle.

7. Examples of binomial and Gaussian alternating sums

The best known example of an alternating sum of binomials is
n n n n.n, _
@ - P+ (DI =0
Using the notations of the previous section,this result can be obtained

by setting £(¢) = 1 for the empty set and for cach subset S of an

n-set have f(S) 0 .

Then, for all subsets S of an n-set N, we have

g(s) = § £(M = 1.
s

By M8bius inversion,

E MDY= £ =0 forall n>0 .
1=0

The result translates immediately into the Gaussian relation
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n n

n—... _ N, n iy (2) n.n, _
iZ—o[l]u(l) = [0] [1] * [2]q oot ( l) [i]q .t ('l) [n] = o . (7-1)
We can recognize that (7.1) is the same as the recursion formula (6.7).

Another well known alternating binomial sum is
n
Ll <o
J=1

We can give two different interpretations to this relation, and accordingly
obtain two different Gaussian identities.

(i) We use the Inclusion-Exclusion principle to determine the number of
those (n-1)-subsets of an n-set which do not contain any of the elements

1,2,...,n, knowing that the answer is 0 .

Let 2 be the set of (n-1)-sets; let the property set P be defined

in the following way .

Pj : the subset contains the clement j (j = 1,2,...,n) ,
Pjk : the subset contains the clements j and k , and so on.
n n
lal = () = (P =n.

The number of (n-1)-sets containing j is (::;) . Hence the sum of
the numbers of (n-1)-sets with propertiecs Pl‘P2""'Pn respectively, is
n(::;) . The number of (n-1)-sets with properties Pi and Pj is (:_g)

The sum of these numbers is (;)(::i)

We proceed in this manner and,applying the I-E principle,we find that

n n, n-1 n, ,n-2 . r, n-r n, _
(o) - (DCTY + QTP+ (GDTCIDD =0

. n-r n-ry _ o .
Setting (n-r-l) = ( 1 ) (n-r) we obtain
Z(-l)r(:)(n-r) =0 or,writing j = (n-r),
)
10 =0
This interpretation can be used directly for (n-1) -subspaces of an n-

dimensional linear space by fixing a basis and then using the I-E
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principle in the above manner to determine the number of hyperplanes
((n-1) -spaces) not containing any of the given basis elements. By
‘ reasoning identical to the above, the number of subspaces of property
| jl'j2""'jr (i.e., containing the basis elements j1'j2”"'jr'8“d hence
the subspace determined by them) is

LT - 05

with the corresponding sum being
n, n-r
@

| Thus the number of hyperplanes not containing any of the basis elements

is

pvn.

VisVpueo
nil( DrO T
‘ =0 - ) r [ 1 ] .

This sum however is not 0.

We can count this sum by determining the number of hyperplanes with

i equations

n

Jax =0 (3, €GF(q))

|
not containing any of the unit-vectors (100...0)...(00...1)

Choosing a, =1 and a, £0 (i=2,...,n), there are (q-l)n—l

} , 1
L possible choices which determine the admissible hyperplanes.

| Hence

n-1
- -1
I DTOOT = @n (7.2)
=0
This interpretation, however, does not yield results when m -subspaces

are considered instead of hyperplanes.

(ii) We use again the generalised inversion theorem.
Define f(S) =1 if S a subset of an n-set containing one element
or if S is a subspace of dimension one of an n-space,

Otherwise,in each case let f(S) =0 .
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Then,in the case of subsets,

1
u

g(s) = | £(1)
pL=9]

) In the case of subspaces,
. k
L g(s) = J £(m)
b=

where k is the dimension of § .

"
—
[
—
-

The inversion theorem gives, for sets,
n
P endmsety -0,
470 J

which is the same relation as Z(—I)Jj(?) =0 of (i).

For subspaces we obtain a relation different from (7.2), namely,

n -3 J
i} Jgo(-l)-’[",’lln'_'j]q(z) <0 (n>1) . (7.3)

The last identity can be gencralised by letting f£(S) =} for al]
m-subscts of an n-set, or m-subspaces of an n-dimensional space,

respectively, and having £(S) = 0 otherwise.

If S is a k-set or k-spacc.rcspectively.where k >m, then
k
g(s) = ] £(M = ()
&S
if S,T, represent subsets, Also,

L 8(s) = [X]

for subspaces. The resulting binomial identity is

n-m I n n-j
LEDEINM =0 s m;
3=0

For Gaussians, we have
n-m

) (-nJ[nTjM“,;qu"‘;’ =0 . (7.4)
3=0

A further pair of relations is obtained similarly by setting

f(S) =1 for all subsets (subspaces). These are
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Iyl .
TN <0

and
Y 4 _
L0706, 1 (7.5)
(Note: The above binomial identity can be obtained by applying the
Inclusion-Exclusion Principle to count those sets which do not contain
any of the elements (1,2,...,n) . The answer is I, corresponding to

the empty set.)

Two more examples of generalisation, using less trivial f functions,

follow. The first one is the identity.
n-1
I 01002 = 2n,
k=0

which generalises to

n-1 k
I (-n%2

L (n-k)[nfk]cn_ = 2n . (7.6)

k

Let r be the dimension of a subspace S of the n ~dimensional space V .

Define £(S) = r . Then
)‘ §r1
g(8) = ) (M= ) jl.]l=5r¢
s o7 2w

r

r r r r r
_ (since 2 T 5051 = L5050+ §50.50= 5505« § (-0 () = r
L o JEO)[J JZOJ[J JZOJ[“_J .JZOJ J JZO TG Xor[J] )

The inversion tlieorem (a) then gives (7.6).

Another known alternating identity is
m
k n-k
Ientgadh =1
k=0
One interpretation of this is given by counting those m-subsets of an n-set

which contain exactly the m elements of a given m-set M .

One possible translation of this to Gaussians is
m

k
L ORI e - gl (7.7)
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Proof: Let M be a fixed m-subspace of the n-space V .,

Let K be a k-dimensional subspace of M . Define £f(K) as the
number of those (n-m) - dimensional subspaces which intersect M exactly

in K . By Theorem 2,

n-m | (nemek)(m-k) _ n-m; (n-m-k)(m-k)
£(K) = [(n-m)Tk] I G L b

In particular, for the 0-space, we have f(0) = q(n'm)m , i.e.,the number
of those (n-m) dimensional subspaces of V which complement M .
Then h(K) = Z £f(S) i hence h(K) enumerates all those (n-m) -subspaces

soK
of V which contain K . By (a) of section 4,

h(K) = [(n?;§-k] - (N
(In particular h(0) = [:] 2)

A direcct application of the inversion theorem (b) gives the identity (7.7

In conclusion,here are the two alternating Gaussian identities which
so far have not successfully been interpreted. One is the identity, known

by Gauss,

m
> DA @D @D @D, for a even,
k=0

The sum s 0 when n 1is odd; this follows from [:] = [n:k]'
The second identity which seems to be connected to (7.7), since 1t gives
the same binomial identity for q=1, is

] -k, k (5
z SNl e R K A
=0
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