Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
A006275
Pierce expansion of sqrt(2) - 1.
(Formerly M1342)
12
2, 5, 7, 197, 199, 7761797, 7761799, 467613464999866416197, 467613464999866416199, 102249460387306384473056172738577521087843948916391508591105797
OFFSET
0,1
COMMENTS
From Peter Bala, Nov 22 2012: (Start)
For x in the open interval (0,1) define the map f(x) = 1 - x*floor(1/x). The n-th term (n >= 0) in the Pierce expansion of x is given by floor(1/f^(n)(x)), where f^(n)(x) denotes the n-th iterate of the map f, with the convention that f^(0)(x) = x. The present sequence is the case x = sqrt(2) - 1.
The Pierce expansion of (sqrt(2) - 1)^(3^n) is [a(0)*a(2)*...*a(2*n), a(2*n+1), a(2*n+2), ...] = [sqrt(a(2*n+1) - 1), a(2*n+1), a(2*n+2), ...]. The Pierce expansion of (sqrt(2) - 1)^(2*3^n) is [a(2*n+1), a(2*n+2), ...]. Some examples of the associated alternating series are given below.
(End)
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
T. A. Pierce, On an algorithm and its use in approximating roots of algebraic equations, Amer. Math. Monthly, Vol. 36, No. 10 (1929), pp. 523-525.
Jeffrey Shallit, Some predictable Pierce expansions, Fib. Quart., 22 (1984), 332-335.
Eric Weisstein's World of Mathematics, Pierce Expansion.
FORMULA
Let u(0)=1+sqrt(2) and u(n+1)=u(n)/frac(u(n)) where frac(x) is the fractional part of x, then a(n)=floor(u(n)). - Benoit Cloitre, Mar 09 2004
From Peter Bala, Nov 22 2012: (Start)
a(2*n+2) = (3 + 2*sqrt(2))^(3^n) + (3 - 2*sqrt(2))^(3^n) + 1.
a(2*n+1) = (3 + 2*sqrt(2))^(3^n) + (3 - 2*sqrt(2))^(3^n) - 1. (End)
sqrt(2) - 1 = a(0)/a(1) + (a(0)*a(2))/(a(1)*a(3)) + (a(0)*a(2)*a(4))/(a(1)*a(3)*a(5)) + ... = 2/5 + (2*7)/(5*197) + (2*7*199)/(5*197*7761797) + ... . - Peter Bala, Dec 03 2012
EXAMPLE
Let c(0)=6, c(n+1) = c(n)^3-3*c(n); then this sequence is 2, c(0)-1, c(0)+1, c(1)-1, c(1)+1, c(2)-1, c(2)+1, ...
From Peter Bala, Nov 22 2012: (Start)
Let x = sqrt(2) - 1. We have the alternating series expansions
x = 1/2 - 1/(2*5) + 1/(2*5*7) - 1/(2*5*7*197) + ...
x^3 = 1/14 - 1/(14*197) + 1/(14*197*199) - ...
x^9 = 1/2786 - 1/(2786*7761797) + 1/(2786*7761797*7761799) - ...,
where 2786 = 2*7*199, and also
x^2 = 1/5 - 1/(5*7) + 1/(5*7*197) - 1/(5*7*197*199) + ...
x^6 = 1/197 - 1/(197*199) + 1/(197*199*7761797) - ...
x^18 = 1/7761797 - 1/(7761797*7761799) + ....
(End)
MATHEMATICA
PierceExp[A_, n_] := Join[Array[1 &, Floor[A]], First@Transpose@ NestList[{Floor[1/Expand[1 - #[[1]] #[[2]]]], Expand[1 - #[[1]] #[[2]]]} &, {Floor[1/(A - Floor[A])], A - Floor[A]}, n - 1]]; PierceExp[N[Sqrt[2] - 1, 7!], 10] (* G. C. Greubel, Nov 14 2016 *)
PROG
(PARI) my(r=1+quadgen(8)); for(n=1, 10, print1(floor(r), ", "); r=r/(r-floor(r)));
CROSSREFS
Sequence in context: A041961 A242169 A058854 * A042673 A214705 A252283
KEYWORD
nonn,easy
EXTENSIONS
More terms from James A. Sellers, May 19 2000
STATUS
approved