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On cyclic binary n-bit strings

W. O. J. Moser

Abstract

Recurrences are obtained for the number of cyclic binary n-bit strings restricted by the
non occurrence of certain substrings. These simplify and generalize the counts obtained

by Agur et al (Discrete Math. 70 (1988) 295-302).

Résumé

Nous obtenons des récurrences pour le nombre de suite “n-bit” cycliques binaires qui
sont contraintes par la non occurrence de certaines sous-suites. Ceci simplifie et généralise
les décomptes obtenus par Agur et al (Discrete Math. 70 (1988) 295-302).
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On cyclic binary n-bit strings
W. Moser
McGill University, Montreal, Canada H3A2K6

A binary n—bit cyclic string (briefly n—CS) is a sequence of n 0’s and 1’s (the bits),
with the first and last bits considered to be adjacent (i.e., the first bit follows the last bit).
This condition is visible when the string is displayed in a circle with one bit “capped”: the
capped bit is the first bit and reading clockwise we see the second bit, the third bit, and so
on to the nth bit (the last bit). A sequence of consecutive bits is a substring. Motivated by
a problem of genetic information processing, Agur, Fraenkel and Klein [1] derived formulae
for the number of n-CSs with no substrings 010 nor 101 (i.e., no alternating substring
has length > 2 or, equivalently, all alternating substrings have length < 2) and for the
number with no substrings 0 0 0 nor 1 1 1 (i.e., no subtrings of like bits has length > 2,
or, equivalently, all substrings of like bits have length < 2).

In this note we shall generalize the counts to “no alternating substring has length > w
(equivalently “all alternating substrings have length < w”) and to “no substring of like
bits has length > w " (equivalently, all substrings of like bits have length < w).

For this purpose we first investigate (for n > 1, k > 0, w > 1) the number (n : k), of
n—CSs which have exactly k 1’s (n — k 0’s) and every 1 followed by < w 0’s (equivalently,
every substring of 0’s has length < w). The parenthetical remark suggests that we take

1, 1<n<w,
("'0)‘”:{0, w+1<n. (1)
Of course ()
n 1<n<w+k
. — k/? = — ’
(n i k)w {0, 1<k, k{w+1) <n, 2)
where

(n) _ {n!/k!(n—k)!, 0<k<n,

0, 0<n<k.

Consider a n—CS counted in (n : k)y, n > w + 2, k > 2. If the first bit is 1 (i.e.,
capped bit is 1), and the last 1 is followed by exactly ¢ 0%s (0 < ¢ < w), delete this last
1 and the 7 0’s which follow it and then we have a (n — 1 — ¢)—CS with k — 1 1’s, first
bit 1, and every 1 followed by < w 0’s. If the first bit is 0, and the first 1 is followed
by ¢ 0’s (0 < 7 < w), delete this first 1 and the ¢ 0’s which follow it and we then have a
(n —1—1)—CS with k — 1 1’s, first bit 0, and every 1 followed by < w 0’s. Hence

n:kly=Mn-1:k-1p+n-2:k—Dp+---+(n—-1-w:k—-1),,
k>2, n>w-+2.

(3)



The number of n—CSs with every 1 followed by < w 0’s is Fy(n) = Z(n : k), while

k=0
the number of n—CSs with an even (resp. odd) number of 1’s, each followed by < w Q’s, is

Fi(n)=) (n:2k)w resp. Fo(n)= D (n:2k—1),. (4)

k=0 k=1

From (1), (2) and (3) we deduce that

2n—1 1<n<w,
Fi(n) = ¢ 2n1 1, n=w+l, (5)
Foln—=1)+Fo(n—2)+ -+ Fo(n—1-w), n>w+2,

2n—1 1<n<w+1,
F2(n) = Fin—=1)+--+Fi(n—-1-w)+n-2w+1), w+2<n<2w+1, (6)
Fon=1)4+Fi(n—2)+---+Fi(n—1—w), n > 2w+ 2,

n. n=12,...,w,
2" — 1, n=w+1,
Fy(n) = Foln—1)+--+Fy(n—1-w)+n—-2w+1), w+2<n<2w+1, (7)

Fy(n—=1)+Fy(n—2)+ -+ Fyp(n — 1 — w), n > 2w + 2.

We will need the numbers Fj(n) and Fg(n). These can be computed from (5) and
(6). A simpler way of getting them is to observe that the numbers D, (n) = F&(n) — F5(n)
satisfy

0, 1<n<w,
-1, n=w-+1,

Dy(n) =< w+1, n=uw+2, (8)
-1, w+3<n< 2w+ 2,

Dn—2—wa n 2 2w + 3.
Thus, we may compute Fy(n) from (7), Dy(n) from (8) and then

2F; (n) = Fy(n) + Dy(n), 2F,(n) = Fy(n) — Dy(n). (9)

The following Tables show Fy,(n), Dy(n), 2F%(n) and F2(n) for w = 1,2,3 and

n=1,2,3,...,15. The boldface entries are the initial values.
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n 1 2 3 4/_,/!51{ 6 7 8 9 10 11 12 13 14 15
Fi(n) 2 3 4 7 11 18 20 47 76 123 109 322 521 843 1364
Dir) 0-12 -1 -1 2 -1 -1 2 -1 -1 2 -1 -1 2
2Ff(n) 2 2 6 6 10 20 28 46 78 122 198 324 520 842 1366
2F?(n) 2 4 2 8 12 16 30 48 74 124 200 320 522 844 1362

Fi(n)=Fi(n—1)+ Fi(n—2), n>4; Dy(n)=Di(n—23), n>5;

2Ff(n) = Fi(n) + Di(n);  2F(n) = Fi(n) — Di(n), n>1

Table 1

n 123 4 5 6 7 8 9 10 11 12 13 14 15
Fo(n) 2 4 7 11 21 39 71 131 241 443 815 1499 2757 5071 9327 ~
Dy») 0 0-1 38 -1 -1 -1 38 -1 -1 -1 3 -1 -1 -1
2Ff(n) 2 4 6 14 20 38 70 134 240 442 814 1502 2756 5070 9326
2F(n) 2 4 8 8 22 40 72 128 242 444 816 1496 2758 5072 9328

Fy(n) = Fa(n — 1) + Fo(n — 2) + F3(n — 3), n > 6;

2F3(n) = F3(n) — Da(n),

2F2°(n) = Fz(n) + Dz(n);
Table 2

Dy(n) = Da(n—4), n>T;
n>1.

4 5 6 T 8 9

15 26 51 99 191 367

14 30 50 98 190 366

S <= B~ N

3
8
o -1 4 -1 -1 -1 -1
8
8

N O W

16 22 52 100 192 368

F3(n) = F5(n — 1) + F3(n — 2) + F3(n — 3) + F3(n — 4),n > 8;
2P5(n) = Fy(n) ~ Da(n),

2F3(n) = F3(n) + D3(n);
Table 3

10 11 12 13 14 15
708 1365 2631 5071 9775 18842
4 -1 -1 -1 -1 4
712 1364 2630 5070 9774 18846
704 1266 2632 5072 9776 18838
D3(n) = D3(n —5),n > 9;

n > 1.



Consider for any n—CS
I =2ZX1Z2Z3...Z,

the n—CS

0, fz;==z;,, ¢=12,...,n,

T = . e L = H
R I b

For example
T(001110010110001111) = 101001011101001000

T(101100011101010111) = 011010010011111100
T(110011001100100000) = 101010101010110000

Thus, when passing over the bits of z, T(z) records the changes (from 0 to 1 or from 1 to
0) by a 1, and records no change (from 0 to 0 or from 1 to 1) by a 0.

Of course
T(z) = T(z),

where Z is the complementary n—CS

I=212223...2y,

z: = 1 ifz.,-:O,
YUlo ifzg =1,

However, for any two different n—CSs u and v, both with first bit 1, T(u) # T(v). Indeed
T is bijective between the set of 2"~! n—CSs with first bit 1 and the set of 27! n—CSs
with an even number of 1’s.

Thus, a n—CS z with first bit 1 corresponds to a n-CS T'(z) with an even number of
I’s, and then a substring of w like bits in z corresponds to a substring of w — 1 0’s in T(z),
while a substring of w alternating bits in z corresponds to a substring of w —1 1’s in T(z).
Hence '

z is a n—CS with first bit 1 and no alternating substring
has length > w (all alternating substrings have length < w)

if and only if

T(z) is a n—CS with an even number of 1’s and
all substrings of 1’s have length < w — 1

if and only if

f(;) is a n—CS with an even number of 0’s
and all substrings of 0’s have length < w — 1

if and only if

n is even and T'(z) has an even number of 1’s
and all substrings of 0’s have length < w — 1

or

—

n is odd and T'(z) has an odd number of 1’s
and all substrings of 0’s have length < w — 1.
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We have therefore that the number a<y(n) of n—CSs with no alternating substring

of length > w (equivalently, every alternating substring has length < w) is
(n) = 2F;_,(n) if n is even,
¢<wl™ = 2F°_,(n) ifnis odd.

In the case w = 2 we have that the number of n—CSs with no occurrence of 101 nor
010 is

_ [ 2Ff(n) if nis even, 5.0
a<z(n) = { 2F?(n) if nis odd. ‘,‘_)’A\ < ((
(CD |\
We read these from the Table 1: e ——————————
n 1’ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 _!
0'32(”) 2 2 2 6 12 20 30 46 74 122 200 324 522 842 1362 }

in agreemth Agur et alirl].
Also
z is a n—CS with first bit 1 and no substring of like bits has length > w
(all substrings of like bits have length < w)
if and only if

T(z) is a n—CS with an even number of 1’s and all substrings of 0’s have length < w — 1.

Hence the number £<,,(n) of n—CSs with no substring of like bits having length > w
(all substrings of like bits have length < w) is

L) = 2F5_, (n).
In the case w = 2 we have that the number of n—CSs with no occurrence of 000 nor
111 is
£<a(n) = 2F(n),
which we read from Table 1:

e e R e T e A e T

n 1 2 3 4 5 6 7 & 9 10 11 12 13 14 15 {
b<a(n) \'2 2 6 6 10 20 28 46 78 122 198 324 520 842 1366, !

in agreement with Agur _éf‘zrm',“'“" od
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