

a

t \ y . ALY

wy fadille =4 Ab0Te
SEARCH IN AN ARRAY IN WHICH PROBE COSTS GROW
EXPONENTIALLY OR FACTORIALLY

. By

MARY V. CONNOLLY* and WILLIAM J. KNIGHT#

Abstract. We find efficient strategies for searching an ordered array in which the cost of a
probe into the array increases exponentially or factorially as the probe location moves from left to
right. We show that binary search is often significantly inferior to certain other simple search
strategies. This is true both in the case where expected search costs form the basis of comparison

and also in the case where it is desired to minimize the maximum possible search cost.

Key words. array search, search trees, binary search
AMS(MOS) subject classification. 68P10

1. Introduction. Steiglitz and Parks [4] have described a filter-design problem that turns
out to be equivalent to the problem of searching an ordered array for which a probe into the k-th
location has an associated cost that increases as k increases. The equivalence of the two problems
is explained in [2]. That paper confirmed a conjecture of Steiglitz and Parks to the effect that
although binary search in such an array might be expected to perform poorly in comparison with
other seach strategies, in fact binary search is surprisingly near optimal when the probe costs are
given by a polynomial in k. In the present paper we consider what happens when the probe costs
grow exponentially or factorially. We shall show that in these two cases, binary search is often
inferior to certain other simple search strategies.

2. Preliminaries. Throughout this paper we discuss the situation encountered by Steiglitz
and Parks [4], namely an array of n problems of some kind, one for each array subscript k from
1 to n. The amount of time required to solve the k-th problem is given by a "penalty function”
P(k) . Each problem has a "yes" or "no” answer, and when the answer is "yes" for some k; itis
"yes" for all larger subscripts k. We seek the smallest value of k for which the answer is "yes",
provided there is such a k. To find this smallest value we want to use an optimal search strategy
on the array. There are two separate criteria for deciding whether one strategy is better than

* Department of Mathematics, St. Mary's College, Notre Dame, Indiana 46556.
1 Department of Mathematics and Computer Science, Indiana University, P.O. Box 7111,
South Bend, Indiana 46634.

another. The first compares the expected search costs of the competing strategies; the second
compares their worst possible costs. In this paper we consider both criteria. We look at
exponential and factorial penalty functions because the solutions of many combinatorial problems
require exponential or factorial time.

Every search strategy for an array of length n corresponds to a unique binary tree with node
labels 1, ..., n. The tree is recursively defined as follows. The label, call it r, of the root of the
tree is the subscript of the array cell that the strategy tells us to probe first. The left subtree contains
the labels 1, ..., r-1. It corresponds to the search strategy to be used for locations 1, ..., r-1 if the
first probe yields the answer "yes". The right subtree contains the labels r+1,...,n and
corresponds to the strategy to be used if the first probe yelds the answer "no". Thus the tree and its
labels form a binary search tree (see [3, p. 321]). Conversely, every n-node binary search tree with
node labels 1, ..., n corresponds to exactly one search strategy. It is essential to note that the
nature of the problem we are considering forces a search to continue until it reaches one of the n+1
external nodes (see [3, p. 239)), at which point we can identify the location of the first "yes".

In the right subtree of a search tree of the type described above, the node labels do not begin
at 1. In order to deal recursively with the left and right subtrees, it is convenient to introduce the
following terminology and notation. A search tree will be a binary tree whose (internal) nodes
have been labeled with a sequence of successive positive integers in such a way that the tree has

become a binary search tree. When T denotes an unlabeled binary tree with n nodes, then
T will denote the same tree made into a search tree using the node labels 1+t, 2+t, ..., n+t.

1+t,n+
3. Optimal strategies for expected costs. Consider the case where search strategies are to
be compared on the basis of their expected costs. We have no prior information about the array
location of the first "yes", and so we assume that it is equally likely to be found in any of the n
locations or not to be found at all. That is, each possibility has probability 1/(n+ 1). In [2]itis
shown that in this case an optimal search strategy corresponds to a search tree T, ; that minimizes

n

(1) L Pk W (T
k=1

where Wy (T) denotes the weight (number of nodes) of the subtree of T ; whose root has the
label k. We shall denote the sum in (1) by the expression SP(k) (T, ,n) . More generally, for any
n-node search tree T, and any penalty function P(k) defined for 1+t <k < n+t we shall write

n+t

() Spo (Tistasd) = Y P Wi (Tyieane0 -
k=1+t

This notation allows us to write compactly a general recurrence relation:

3) Spao (Tretne) = PO+ Spagy Lyge) * Spo Rpspn+t) »

where 1 is the label on the rootof T, and L and R are its left and right subtrees, with r-t-1
and n +t-r nodes respectively. If we let Sl;(k) (n, t) denote the optimal (i.e., minimal) possible
value of Spgy (T +) 88 T ranges over all n-node binary trees, then (3) implies that

@) Spey ™D = min jygpcpn (PO Spgo T-t- 1,0 * Spap @ LT LFD)
and the values of r that produce the minimum in (4) are the roots of optimal search trees for the
prescribed values of n and t. Note that an n-node binary tree T may have the property that

Ty tn+t is optimal for one value of t, but not optimal for a different value of t. For example,
when P(k) =k! and n=4 the tree on the left in Figure 1 is optimal when made into a search tree
with labels 1,2.3,4, but not with 3,4,5,6, while the tree on the right is optimal with labels 3,4,5 ,6,
but not 1,2,3,4 . These facts can be verified by examining all 14 possible 4-node binary trees.

N !
@ ® /
\‘ \

Figure 1

If we are compelled to obtain an exact optimal search strategy for a prescribed P(k) and

%
array length N, then we must calculate SP(k) (N, 0) as well as complete information concerning at

least one optimal search tree whose search cost is this optimal number. Recurrence relation (4),

s
together with the fact that SP ® (0,t) =0 forall t, makes it possible to use dynamic programming

to compute all this information: we compute a triangular array of optimal costs and roots for all
pairs (n,t) satisfying n2 0,t20, n+t <N (cf. [2, pp. 119-123], where a similar dynamic
programming problem is solved). This appears to require O (N®) time, since each of the (roughly)
NZ2/2 pairs (n,t) seems to require us to examine n valuesof r in order to find the minimum in
formula (4). However, when P(k) is a fast growing function, the following theorem drastically
limits the number of values of r that must be examined for a given pair (n, t) .

THEOREM 1. Let P(k) be any positive penalty function. Let n 2 1 and t2>0 be prescribed
integers. Then any root r that minimizes the expression on the right in equation (4) must satisfy

5 rP(_r)t < i;—lp(l e

Proof. We use inductionon n. If n=1, then r= 1 +t and the inequality to be proved is trivial.
Now suppose the theorem is true for n = 1,2,..,m-1,where m22. We seek to prove that it

is also true when n=m . Take any r that minimizes the expression in (4) when n=m. Then r
is the root of some optimal n-node search tree Ty .4 for the prescribed values of n and t. Let

¢ denote the left childof r in T . Perform a simple tree rotation (see [3, p. 306]) to
produce a new search tree having root ¢ with right child r. Only two weights Wy (T}, W
have changed: the weight on ¢ in the new tree is m , whereas in Ty ey itis T+ E- 1; and the
new weight on 1 is m +t-c,whereasin Ty, itis m. It follows that the net change in

search cost in going from T, ., to the new tree 18
P(c) ((m-(r-t-1)) + P(r) (m+t-c)-m).

Since the new tree must have search cost at least as great as that of the optimal tree Ty, ¢, the

expression above must be non-negative. From this we deduce the inequality
(6) Pr) < (m-r+t+1)P)/(c-1) .

Now examine the subtree with root ¢ in Ty .- This subtree has r -t - 1 nodes, and it must
itself be an optimal search tree, for if not then we could replace itin Ty, . Dya search tree with
lower search cost, and by (3) this would produce a better tree than the optimal Ty, 4 By the
induction hypothesis then, we must have Pc)/(c-t) < [((r-t-1)+1)/2] P(1 +t) . Combining
this with (6) gives P(r) < (m-r+t+1) (r-t)P(1+1t)/2. Since m-r+t+1 < m+ 1,
inequality (5) holds when n=m,as required to complete the induction.]

The power of Theorem 1 can be seen by taking an example. Suppose P(k) =k! and t= 0.
Then the inequality in Theorem 1 takes the form 2(-1! <n+1. Since -l < 2(r-1)! for
all positive r, Theorem 1 tells us that when seeking the root T that minimizes the right side of (4),
we can (in this special case) restrict our consideration to r satisfying r < 1 +1g(n+ 1) instead of
r < n. The inequality is even stronger when t > 0 and P(k) =k!. Thus, in this case the amount
of time required to compute an exact optimal search strategy for a given array length N is only
O (N2 log N) . The entries in Table 1 were computed using this dynamic programming method.

Although we have indicated how to calculate the optimal search strategy, the point of this

paper is to demonstrate that for all practical purposes such calculations are not needed when P(k)
grows exponentially or factorially. We shall show that certain very simple search strategies are so
nearly optimal that it is unlikely to be worthwhile to try to replace them by exact optimal strategies.

We begin with a factorial penalty function. The following theorem implies that when
P(k) = k! , linear search is so nearly optimal that no other more complicated strategy need even be
considered. In particular, binary search is inferior to linear search.

[4
£
£
[4
Z
€
£
14
(4
£
£
Z
[
[4
[4
[4
Z
[4
T

T

8TAL69°C
LTI9G6E" T
GTAZ8T L
p1I8TIO ¥
£13I€8E"C
Z1d€06°1
TT3ZI0°T
60dTZE L
803IFTIL"S
p68vSy8Y
80Z00SV
€TEZ9V
LOZES
1869
690T

L6T

Sb

€T

7

T

soa1], rewndQ 180D Yoreag

JO 5100y

rewndo

= (Dd

€
(4
T
€
[4
[4
£
[
£
4
T
[4
T
(4
T
4
(4
1
I
T

saar], reundo
Jo sj00y

6dG8L L
6dG66G6°¢C
84069 "8
8d£88°¢C
LATTY 6
LIV0Z €
£3890°1
0£G66S¢E
£0698T1
06FS6E
9Z8TET
ZE6EY
0FovI
L8V
0291
vES

PLl

2°]

ST

£

180D YoIeas
rewndo

¥ = ODd

[21QBL

14

G
b
€
4
b
£
Z
b
€
4
Z
£
Z
€
Z
21
2
2’1
1

1

IEN
A

\
i

p€0868¢E
8668761
88VVLO
8EZLBY
909¢€¥<
Z6LTZ1
06809
8EVOE
80ZGT
86GL
p6LE
8881
BEG

vov

9¢¢

0TT

0S

Z¢

8

Z

soary, ewndQ 150D YoIeag

JO s100Y

» |

rewndo
¥y = (Dd

14
3
9
S
12
€
14
S
17
£
|4
£
€
€
£
4
4
(4
T

1

saa1], rewmndo
Jo s100y

pd99€° ¢
paLLS 1
ra0S0° 1
€3686 "9
€ATS9 P
€36G60° ¢
€dLG60° ¢
€3eoe’ 1
06€£°006
G8E"V6S
896 "68¢
POT"¥G<C
666G €91
08T ¥OT
PEL VO

906" 8¢
€TE€"CC
GZ9°T1

062§

006°T

1S00) oIess
rewndo

¥S'1 = Od

0¢
61
8T
LT
91
1
A
€T
(AN
1T
0t

- N M T N O~ ©

u

THEOREM 2. Suppose P(k) =k!.
(a) The search cost of a linear search in an array of size n 2 7 isless than
n! + 2(n-1D! + 3(n-2)! + 4n-3)! + 9n-4)!.
(b) The search cost of every search strategy in an array of size n 27 exceeds
n! + 2(n-1! + 3n-2)! + 4n-3)! + (n-4)!.
(c) The search cost of binary search in an array of size n > 7 is less than
n! + 3(n-1D! + 8n-2)!,
but for infinitely many n , the search cost for a binary search in an array of size n exceeds
n! + 3n-1! + (n-2)!.
Proof. The proofs of these assertions will be shown to depend on the following inequalities, each

of which can easily be verified by a simple induction argument.

(7 4n-4)! > 6(n-5)! + 7n-6)! + .. + n(1)! when n27;
(8) n! > 2(n-1! + 3n-2)! + 4mn-3)! + .. + n)! when n 2 4;
9) (n-2)t > 3(n-3)! + 4m-4! + S(n-5! + .. + (n-1)(1)! when n27,
(10) 2n-2)! > n[(n-3)! + (n-H! + (n-5)! + ..+ 11] when n27.
By equation (1), the cost of a linear search in an array of length n is given by

(11) 1m)! + 2(n-1)! + 3(n-2)! + .. + n(D)!.

This together with inequality (7) gives part (a) of the theorem. We prove part (b) by proving it for
all optimal trees. Take any optimal search tree Tin with n > 7 nodes. Then node n must bea

leaf of T, no for otherwise we would have this contradiction: the search cost of T, n would be

strictly greater than 2n!, which by (8) would exceed linear search cost (11). Since node n isa
Jeaf, by the structure of a search tree the only possible parent of n in T, isnode n- 1. The left

subtree of node n - 1 must be empty, for if not then the weight of the subtree rootedat n -1
would be at least 3, and thus the costof T would exceed n! + 3(n-D! + (n-2)! + (n-3)!
+ ... + 1!, which by (8), with n replaced by n - 1, would exceed linear search cost (11). Since

the left subtree of node n - 1 is empty, by the structure of a search tree the only possible parent of
n-1in T, isnode n- 9. The left subtree on n - 2 must also be empty, for if not then the

weight of the subtree rooted at n - 2 would be at least 4 , and thus the costof T ; would exceed
n!l + 2m-1D! +4n-2)! + (n-3)! + ..+ 11, which by (9) would exceed linear search cost
(11). By the structure of a search tree the only possible parent of n -2 isnode n-3, which
therefore has weight at least 4 , so the search cost of T o exceeds n! +2(n- 1! +3(n-2)!
+4(n-3)! + (n-4)!. Finally, for part (c) let By, denote the search tree corresponding to the
classical binary search strategy in an array of length n . The first inequality of part (c) is proved by
noting thatin By, the weight of the subtree rooted at n is always 1, the weight of the subtree
rooted at n - 1 isat most 3, the weight of the subtree rooted at n-2 isat most 6,and the
remainder of the search cost is bounded above by the expression on the right side of (10). The '

second inequality of (c) is proved by noting that whenever n has the form 2P -1 for an integer p,
then B, 2 contains the 3-node subtree with root n — 1, left child n -2, and right child n. O

Parts (a) and (b) of Theorem 2, together with some algebra and some of the entries in Table
1, can be used to show that only when n is 4 or 5 does the cost of linear search differ from the
cost of an optimal search by more than one percent. When n > 10, it differs by less than one one-
hundredth of a percent. Parts (b) and (c) show that the second-highest order term in the cost of
binary search is infinitely often larger than the second order term in the cost of linear search. Thus,
although the highest order term (n!) for binary search is "correct” and the percent excess over the
optimal cost approaches zero as n goes to infinity, the approach is far slower than with linear
search. For example, when n= 15 binary search is almost six percent worse than linear search.

Now we turn to the case in which the penalty for probing in location k is proportional to bK
for some constant b > 1. The constant of proportionality does not materially affect the
computations, so we assume simply that P(k) = bk . Then it is easy to see from (2) that

(12) Spk (Tyoped) = D' Sy (T o) -

This equation has the happy consequence that when P(k) = bX for some constant b, then an
n-node binary tree T is optimal for labels 1+t, ..., n+t if and only if it is optimal for labels I, ..t
(cf. the comments following equation (4)). Thus we can dispense with the "translation parameter”

E
t and deal only with search trees of the form T ;. We write Sbk (n) for the optimal search cost
in an array of length n, and observe that (4) now takes the simpler form

*x®

(13) Spk (M) = min ¢ ocq { BT+ Spk(r-1) + bSm-n) } .

Again, values of r that produce the mmlmum in (13) are roots of optimal trees labeled 1,. D A

dynamic programming solution for Sbk (N) now requires only that we compute and store Sbk (n)

for each n < N. Although (13) makes it appear that the computation will require time
proportional to NZ, Theorem 1 can be used in an obvious way to reduce this to O (N log N) .
Table 2 shows the formulas for Sbk (n) for n=0,1,...,7and all b>1. Using (13) and a
mathematical program, the authors have generated many more of these formulas, and each is uglier
than its predecessors. This suggests that an elegant theory for exact optimal trees is impossible
(note, for example, the mystifying alternation of the root of the optimal tree when n=7). For this
reason, we have investigated simple search trees that can be shown to have costs that are very
nearly optimal. Here is a summary of our results for penalty functions of the form P(k) = bk
(a) If 1 <b < 1.18 (approximately), then binary search is so near optimal (at worst about 4 1/2
percent above optimal) that for most purposes binary search would be the search strategy of choice.

Root of optimal

n Sk (n) search tree
0 0 B
1 b 1
2 2b + b2 1
3 b + 3b2 + b3 if 1 <b<2 2
3b + 2b2 + b3 if 2<0D 1
4 b + 4b2 + 2b3 + b if 1 <b <3 2
4b + 3b2 + 2b3 + bt if 3<Db 1
5 b + 502 + b3 + 3p% + b if 1 <b<2 2
b + 5b2 + 3b3 + 2pb% + DO if 2 <b<a4 2
5p + 4b2 + 3b3 + 2b% + b if 4<Db 1
6 ob + b2 + 6b3 + b + 3b5 + bd if 1 <b < 1.58457 3
b + 6b2 + b3 + ab% + 205 + pb if 1.58458% < b < 2.8637 2
6b + b2 + 5b3 + 3b% + 2b5 + b if 2.8638 < b £ 3.6180 1
b + 6b2 + 4b3 + 3b% + 205 + DO if 3.6181 $ b <5 2
6b + 5b2 + 4b3 + 3b% + 205 + b if 5 <b 1
7 b + 3b2 + b3 + 7b% + b5 + 3p6 + b’ if 1 < b < 1.3416 4
ob + b2 + 7b3 + b + 4bd + 2p6 + b7 if 1.3417 € b £ 2.2360 3
70 + P2 + 6b3 + b + 4b® + 206 + b7 if 2.2361 £ b £ 2.6415 1
b + 7p2 + b3 + s5b% + 305 + 26 + D’ if 2.6416 £ b £ 3.8454 2
75 + D2 + 6b3 + ab% + 3b5 + 26 + D7 if 3.8455 < b £ 4.7320 1
b + 702 + 5b3 + ab% + 3b5 + 2bf + b’ if 4.7321 < b <6 2
75 + 6b2 + 5b3 + 4ab? + 3b5 + 208 + B! if 6 < Db 1

* This number is an approximation to one of the irrational roots of the polynomial
equation 2b + b2 + 6b3 + b + 305 + b6 — b + 6b2 + b3 + 4b% + 205 + bP. Similarly
for the other non-integer values.

Table 2

(b) If 1.19 <b < 1.68 (approximately), then a "quarter-linear" search strategy (to be described)
yields results that are at worst about 4 1/2 percent above optimal. Over most of this interval, binary
search is always inferior to the quarter-linear strategy, sometimes by as much as 4 percent. The
quarter-linear strategy can be roughly described as one in which we begin at the left and probe in
every fourth location moving to the right until we find we have gone too far.
(c) If 1.68 <b <3.2 (approximately), then a "semi-linear" search strategy (starting at the left and
probing in every second location) is better than both the quarter-linear strategy and binary search,
and is at worst about one percent above optimal. Binary search cost can exceed semi-linear search
cost by as much as 7 1/2 percent.
(d) If b > 3.2 (approximately), then linear search is better than semi-linear, quarter-linear, and
binary search, and is at worst about 1/2 of one percent above optimal. For every b > 3.2, binary
search cost can be at least 7 1/2 percent above linear search cost.

The remainder of this section is taken up with proving the (unpleasantly technical) theorems

from which we can derive the claims we have just made. The first gives us a useful lower bound

for the search cost St‘)k (n) in optimal trees with n nodes.

THEOREM 3. For each real number b > 1 there exist (non-unique) positive constants o, and
T, such that forall n20,

%
(14) Spk (M) 2 opb™ - n - ophb - I = opb? + Om).
Proof. Let b> 1 be given. Fix any positive integer M . Use recurrence relation (13) to calculate
*
Sbk (n) for n=0, .., M-1. The calculations can be numerical, for a prescribed value of b

(cf. Table 1), or algebraic (cf. Table 2). Now define two constants T and o} by
(15) T = min{r + M-r+ Db : r= ..M},

(16) op

Note that (16) implies that forn=0,...,M-1,

min{(S:;k(n)+n+rb)/(bn 1) : n=0,.,M-1}.

(17) S;k(n) > op (b -1/b) - n - Tp .

We shall now show by induction that (17), and hence (14), holds for all n2>0. Take any integer
m > M for which (17) holds for all n<m-1. To prove that (17) holds when n=m, note that
by formula (13) and the inductive hypothesis,

Spk (M) 2 min jpopy { DM # op (™! -1/b) - (r-1) - 1
+ b op (BT - 1/b) - bf (m-1) - b Tp }

10

= op (B -1/b) - m - 1 + min ;o cp {m-1+1 + bl (r-1p) }.

This shows that (17) will hold when n=m provided that forall m2M,
mn | epim-T+ 1+ b'(r-1)} 2 0.

For this it would suffice to prove that M - r + 1 + bF(r-1y) 2 0 for r=1,..,M. But this
is true just by definition (15) of Ty . This completes the proof that (17) holds for all n . O

Generally speaking, the larger the value one chooses for M in the proof of Theorem 3, the
larger the value one is able to obtain for oy, although that is not invariably the case. Computer

calculations of o}, for various values of b and M suggest that for values of b lessthan 3, the
value of op, "settles down" to a constant before M reaches 100.

Next we estimate the cost of binary search. As before, let B, n denote the search tree
corresponding to classical binary search. Its root, of course, is | (1 + n)/2|. The exact search
costs Sbk (Byp) can be computed numerically (for a single prescribed b) or algebraically (as
expressions in the variable b) by using the following special cases of equations (3) and (12):

59(2q) + Spk(Tyq) + bISpk (B if n=2q,
(18) Spk (By) =I
bIL (2q+ 1) + Sk (By g + b Sy (By g if n=2q+1.

THEOREM 4. Assume that P(k) = b¥ , where b > 1. Then there exist (non-unique) constants
ap , Bp » Yp » and dp such that forall n>0,

(19) apb® - 2n - PBp < Sbk(Bl,n) < ypb? - 2n - By.

Proof. Fix any positive integer M. Use (18) to compute Sbk (B) for all n<2M. Let the
following equations define the constants on the left sides:

(20) ap = min { (Sbk (Bl,n) +2n)/(b® -1/b) : n=M, M+1,...,2M },

(21) ep = max { ap (O" - 1/b) - 2n- Spk (Byy @ n =0,1,..,M-1},

(22) Bp = op/b + max {0,&p },

(23) Kb max{1+2/(elnb),2b/(e1nb)},

(24) Yp = max { (Sbk (Bl,n) + 2n +Kkp)/ (b* - 1/b) : n=M, M+1,..,2M },
(25) Cb min { yp b® - 2n - yp/b - Kp - Syk By : n=01,.,M-1},
(26) 3 = Yob + xp + min {0, Cp} -

Then (24) implies that for all n=M, M+1, ..., 2M,

(27) Sbk (Bl,n) < yp (2 -1/b) - 2n - Ky

We shall now show by induction that (27) holds for all n2 M . The base cases are n=M, M+1,
..., 2M . Now take any integer m >2M such that (27) holds for n=M, ..., m-1. To prove that
(27) holds for n=m , note that if m is odd, then by (18) and the inductive hypothesis we have

Sk (B < b D2+ oy (b2 1/b) - 2(m-1)/2 - Kp

+ b(m+1)/2Yb(b(m—1)/2 -1/b) - p(m+1)2 (m-1) - p(m+1)/2 Kb
= Yb (b™ - 1/b) - 2m - Kp * [m+1-(xp- 1)b(m+l)/2 1.

It now suffices to prove that m + 1 - (kp - Db™*2 < 0. Since kp 2 1+2/(elnb), it
suffices to prove that m + 1 - 2b(™* 12/ (¢Inb) < 0. This can be done by using elementary
calculus to prove that the function 2x - 2b* /(e In b) has maximum value 0. Similarly, if m is
even, then by (18) and the inductive hypothesis,

Sk By < b2 m + yp (B2~ 1/b) - 2(m/2-1) - Kp
+ bm/?.Yb(bm/Z -1/b) - bm/2m _ bm/2 Kb
= yp (O™ - 1/b) - 2m - Kp + [m+2- K b™2].

Since xp>2b/(elnb), it suffices to prove that m + 2 - Kp b2 < O, which amounts (again) to

showing that 2x - 2bX/(elnb) < 0. We have completed the proof that (27) holds forall n2M.

Now we are ready to prove the right half of (19) forall n2 0. By (26), dp < yp/b + Kp,
SO -yp/b - Kp < -dp , which together with (27) implies the right half of (19) when n 2 M.
When n =0, ..., M-1 , we have

B < Ypb + Kp * Cp < Yp/b * Kp * Yo b1 - 2n - vp/b - Kp - Sy (B p)

by (26) and (25), so again we obtain the right half of (19).
The left half of (19) is proved similarly, but more simply. Start with (20) and prove
inductively that o (b® - 1/b) -2n < Sk (B,) forall n2 M. By (21), ap(b® -1/b) - 2n

11

< Sbk (B4 ,n) for all n. Combine these facts with (22). We omit details. [

Theorem 4 suggests that if we form the ratio Sbk (B p) /b2 and allow n to grow without
bound, we might see the ratio approach a limit. The next proposition says that this definitely does
not happen. Instead, we can exhibit distinct constants Ap < up such that the ratio oscillates

infinitely often below Ap and above .

THEOREM 5. Assume that P(k) = bX , where b > 1. Then there exist (non-unique)
constants Ap < Up such that

12

(a) if n = 2p*1 + 2P for some integer p 22, then Sbk By £ M b® ;
(b) if n = 2P*1 + 2P - 1 for some integer p22,then Sy (B) ;) 2 up b° .
Proof. The constants A, and up, are given by the following formulas:
N = 1+ 3b + b2 + 6% + 12/b5 + 24/b'2 + (48b - 46)/((b - 1)2 b23)
+ (b + N3 - b2 + SIS - B3 + 11(B2- b8 + 1/((b- DO>-1),

(3 + 26D)/(b3 - 1) + 5b3(MC-1) + 1165/(b12-1).

Ub

Use formula (18) to generate algebraic expressions in b for Sbk (Byp) when n=2,3,5,6,11,12,
., 2P*1e 2P _ 1 2P*14 2P The formula for py, is obtained by simple truncation. The formula
for Ap requires that certain finite sums be estimated above by infinite series of the form

Z;:l kxkl = 1(1 - x)2 . It also uses Bernoulli's inequality: t0>1+n(t-1) forall t21.We

omit the details, which are available on request.]
3
2 / \
/N 1 7
1 4 \ / \
/N 2 5 11
3 6 / A\ / 0\
/N 4 6 9 13
5 7 /\ /N
\ 8 10 12 14
8 \
15
Semi-linear tree when n=28. Quarter-linear tree when n=15.
Figure 2 Figure 3

Our final theorem gives the search costs for semi-linear and quarter linear search trees. Semi-
linear search trees are defined for all n >3 as follows: the root of the treeis T = 2 - (n mod 2),
the right child of r is r + 2, the right child of thatis r + 4 ,andsoonto n-2; then n-1 isthe
right childof n-2,and n is the right child of n - 1; all other nodes are left children of the nodes
along the path already constructed. See Figure 2 for the case where n=8. A quarter-linear tree
is defined forall n > 5 as follows: the root of the treeis r= 4 if n isdivisibleby 4 ,and r=n

13

mod 4 otherwise; the right child of r is r + 4, the right child of that is r+8,andsoonto n-4;

the right child of n -4 is n -2, which has right child n - 1, which has right child n ; the
remaining nodes are placed in trees of the form By ,, B, or B;3. See Figure 3 for n=15.

THEOREM 6. Assume that P(k) =bK , where b> 1.
(a) The search cost of a linear search in an array of length n has the form Ly b® + O (n) , where

Lp isa constant given by b2/(b - 1)2.

(b) The search cost of a semi-linear tree with n nodes has the form Sy b® + O (n) , where Sp is

a constant given by (b% +2b3 +2b2-3b - 1 +b71) / (b2 - 1)Z.

(c) The search cost of a quarter-linear tree with n nodes has the form Qpb™ + O (n), where Qp

is a constant given by (b8 + 2b7 + 4b® + b> + 6b% - 3b3 - 5b%-b -3 + b1+ b2)/ (b*- 1)2.

Proof. By formula (1) the search cost of linear search in an array of size n is bl(n) + b3(n-1)

+ .. +bY1) . Factoring out b® and writing x = 1/b leaves the sum n x4+ (n-1)x22 +

..+ 1, which is the derivative with respect to x of the geometric sum xB+x0le +x+1

= (xn+1 - 1)/ (x - 1) . It follows, after some computation, that the expected cost of linear search is
(b2 - b(b-1)n - b2)/(b-1)?,

from which the formula in part (a) follows immediately. In the semi-linear case, part of the proof

involves summing a finite sum that begins 4b2-2 + 6b™4 + 820 + .. . This can be accomplished

by factoring out b2*! and then writing x = 1/b to produce the sum 4x3 + 6x> + 8b” + ... , which

is the derivative of a finite geometric sum. It is best to work out the case where n is odd separately

from the case where n is even. The proof in the quarter-linear case is similar. We suppress the

details, which are tedious but not difficult. (I

We are now in a position to compare binary, linear, semi-linear, and quarter-linear search costs

with each other and with optimal search costs. We begin by reporting that algebraic comparison of
the expressions for Ly, , Sp,and Qp in Theorem 6 shows that Qp, is the smallest of the three

when 1 <b < 1.6714, that Sy, is smallest when 1.6715 <b <3.2143 , and that L}, is smallest

when b > 3.2144 . Thus we see that for all large values of n, quarter-linear search has smaller
expected cost than semi-linear or liner search when b < 1.7 (roughly), semi-linear search is
preferable when 1.7 <b < 3.2, and linear search is better than the other two strategies when

b > 3.2 . How do these coefficients compare with the dominant coefficients for binary search
derived in Theorems 4 and 57 When 1 <b <1.182 we have v, <Qp, and thus in this range
binary search is to be preferred over the three strategies of Proposition 4 when n is large . (The
inequality vy < Qp was verified numerically rather than algebraically: vy and Qp were computed
for values of b spaced 0.001 apart; the value of M used to obtain yp was 128.) When

14

b > 1.243 we have ap > Qp , and thus in this range binary search is always inferior to one of the
three strategies of Theorem 6. When 1.183 <b < 1.242 we have A, <Qp < Up, in the notation

of Theorem 5. Thus, for each fixed b in this range there are always infinitely many values of n
for which binary search is better than quarter-linear, and infinitely many values of n for which
binary search is worse than quarter-linear.

It remains to compare these coefficients with the values of oy, obtained from Theorem 3. The

results of the relevant comparisons are as follows.
(a) If 1 <b<1.182,then vy, < 1.045 op , so binary search cost exceeds optimal search cost by

no more than 4.5 percent.

(b) If 1.183 <b < 1.242, then Qy, < 1.045 oy, so quarter-linear search cost exceeds optimal by at
most 4.5 percent. Also, yp < 1.047 oy, so binary search is competetive with quarter-linear search.
(c) If 1.243 <b <1.6714 ,then Qp < 1.021 oy, s0 quarter-linear search cost exceeds optimal by
at most 2.1 percent. When b = 1.67 we have up = 1.05 oy, which means that binary search is
somewhat inferior.

(d) If 1.6715 <b <3.2143 ,then Sy, < 1.01 oy, , so semi-linear search cost is within one percent
of optimal. When b = 3.21 we have up, = 1.08 op, which means that binary search is quite inferior.
(e) If b>3.2144 , then Ly < 1.005 oy, , so linear search cost is very nearly optimal.

4. Minimax-optimal strategies. Now consider the problem of finding strategies that

minimize the maximum possible cost of an array search. The problem seems initially to be
equivalent to finding search trees T, , that minimize the quantity

max { L, Pk : Il isapathin T, }

(throughout this section, the word path in a search tree will refer to a list of node labels along a
branch starting at the root and ending at a leaf). Actually, we demand more of a "minimax-optimal
strategy”: in the corresponding search tree, every subtree must be minimax-optimal. Thus, for
example, if the minimax-optimal search tree has its most costly path in the right half of the tree, the
left subtree of the root must nevertheless be a minimax-optimal search tree so that if an actual search
leads into that part of the tree, it will not be unnecessarily expensive. As it turns out, minimax-
optimal strategies in the cases we are considering are totally different from the strategies that
minimize expected costs. Instead of probing near the left end of the array, one probes near the right
end. For example, as we shall see, "reverse semi-linear” trees of the form shown in Figure 4 are
optimal when P(k) is a fast growing function. A reverse semi-linear binary tree with n
nodes is defined recursively as follows: if n =0, the tree is empty; if n=1 the tree consists of a
single node; if n>1 the root of the tree has a right subtree of weight 1, and the left subtree is the

reverse semi-linear tree with n - 2 nodes. In what follows, we use the letter R to denote reverse

semi-linear binary trees; then Ry, .. denotesan n-node reverse semi-linear binary search tree

with labels 1+t, ..., n+t.

Figure 4. Reverse semi-linear binary tree with 7 nodes.

THEOREM 7. Let P(k) be any function which grows so fast that P(n) 2 P(n - 2) + P(n - 3)
forall n> 3. (In particular, this applies to penalty functions of the form P(k) = (k +t)! , where t
is a non-negative integer, and to penalty functions of the form P(k) = bk, where b > 1.325, the
root, approximately, of b3 = b+ 1.) Then forall n the tree R, n 8 minimax-optimal, and if
n > 1, then the path (n - 1, n) is a most costly path. If P(n) > P(n-2) +P(n-3) forall n2 3,
then these reverse semi-linear trees are the unique minimax-optimal trees.

Proof. We use induction. The theorem is easily seen to be true when n = 0,1, 2,or 3. Now
take any integer m such that the theorem is true for n = 0,1,2, .., m- 1, where m > 4. To see
that the path (m - 1, m) is a most costly pathin Ry ., observe that the left subtree of Rl,m isa

reverse semi-linear tree with m - 2 nodes and with a most costly path (m - 3, m - 2) , so it suffices
to prove that the cost of the path (m - 1, m) in Ry , isatleastas large as the cost of the path

(m- 1, m- 3, m-2). This is true because of the hypothesis P(m) 2 P(m - 2) + P(m - 3) of the
theorem. It now remains to prove that all other m-node search trees besides R ,;, have paths
whose costs are at least P(m) + P(m - 1) . But this is obvious, because in every m-node search
tree there is a path that contains nodes m and m - 1. We leave the uniqueness claim in the final

sentence of the theorem as a simple exercise.]

Theorem 7 takes care of factorial penalty functions and many exponential ones. When P(k) =
b¥ and b is a little smaller than 1.325, areverse semi-linear tree is still minimax-optimal, as we
shall see. However, the most costly path goes down to the left instead of to the right, although at
the bottom it veers off to the right. For example, if the tree in Figure 4 is made into a search tree
with labels 1, ..., 7, then the most costly path would be (6, 4, 2, 3).

15

THEOREM 8. Let P(k) =bX, where 1.237 <b < 1.325. Then forall n the tree Ry, is
minimax-optimal, and for n > 4 the path (n- 1,n - 3, ..., 1+ (n mod 2), 2+ (n mod 2)) is a most
costly path. (The numbers 1.237 and 1.325 are the approximate roots of the equations bd =
b3+ 1 and b3 = b+ 1 respectively.)

Proof: We use induction, with base cases n=1, ..., 5, for which the theorem is checked by
examining all possibilities, many of which can be ruled out by use of the following three facts.

(@) When n 2 3, the root of a minimax-optimal tree cannot be 1 (any search tree T with root 1
can be improved by moving the 1 to a position beneath 2 if 2 is not on a most costly path in T,
or by moving 2 to the root position and putting 1 toits left if 2 is on a most costly pathin T).
(b) When n > 3, the root of a minimax-optimal tree cannot be n (any search tree T with root n
can be improved by lifting n - 1 to the root position and putting n to its right).

(©If 1<b<1325,then b3-b-1<0; if b>1.237,then b>-b3-120.

Now suppose that the theorem holds for n=1,2, .., m- 1, where m 2 6. We must
prove that R, is minimax-optimal and that (m-1,m-3,..,1+(mmod?2),2+(mmod2)) is
a most costly path. A routine computation involving a finite geometric sum shows that the cost of
that path in Rl’m is

bm+l ¥ (b3 -b- 1)b1+(m mod 2)
b2 - 1
Since b3 - b - 1 <0 because b < 1.325, it follows that this cost is less than b™*1/(b? - 1). The

assertion concerning the most costly path is proved by noting that the path (m- 1, m-3,m-2) in
Rim is more costly than the path (m -1, m) because b3 - b - 1 <0, and once we know that the

most costly path enters the left subtree, induction does the rest. To prove that R,) 1S minimax-
optimal, take any optimal m-node search tree T, ;, and denote its root by r. By observation (b)

above, r # m. Suppose r=m-1; then T, , cannot be optimal unless its left subtree 1s
optimal, so by induction its left subtree has the same minimax search costas R; - -, and thus

Ty has the same cost as R, , . Next, suppose r=m - 2; thenitiseasy to see that T) can
be improved by moving that root down into the right subtree and replacing it by m - 3, which
contradicts the optimality of T ;. Next, suppose r=m - 3; then Ty, contains the path (m-3,
m - 1, m), and it is easy to check (using b -b3-12 0) that its cost is at least as large as the upper
pound b™*1/(b? - 1) for the cost of the worst path in Ry , ,so T, cannot be strictly better
than R, . Finally, suppose r < m -4 . Then the right subtree of T; ;) is an optimal tree of

weight m -1 2 4, so by induction it can, without loss of generality, be assumed to be of the form
R_.1m- Then the same argument that showed that r cannot be m -2 shows that r cannot be

m - e , where e is an even integer, so m -1 is odd. Then by induction the cost of the path in
T, p that starts at r and then follows the most costly path in the right subtree R, , is given by

16

17

b2l + (B - b - b2

br + br
b2 - 1
A little algebra shows that this is at least as large as the upper bound b™*1/(b% - 1) for the cost of
the worst path in R, ., 5 the verification uses the fact that b2 -b3-120. O

For still smaller values of b the minimax-optimal trees are, generally speaking, less predictable.
We have proved, however, that if 1.089 < b < 1.203, then the minimax-optimal trees of size n 2 8
all have root n - 3, which makes them easy to construct recursively. (The numbers 1.089 and
1203 are the roots of b7 + b6 = b3 +b2 + 1 and b7 =b2 + b + 1 respectively.) To shorten the
paper we omit the proof, which runs along the same lines as that of Theorem 8. Details are
available on request. We have not been able to prove any useful theorems about the exact minimax-
optimal trees for 1.203 <b < 1.237 or for b < 1.089

Acknowledgement. The authors thank Ed Reingold for relaying to them the problem
encountered by Steiglitz and Parks.

REFERENCES

[1] A.V.AHO,]. E. HOPCROFT, AND J. D. ULLMAN, The Design and Analysis of Computer
Algorithms, Addison-Wesley, Reading, Massachusetts, 1974.

[2] W.J.KNIGHT, Search in an ordered array having variable probe cost, SIAM J. Comput.,
vol. 17, no. 6, December 1988, pp. 1203-1214.

[3] E. M. REINGOLD AND W. J. HANSEN, Data Structures, Little and Brown, Boston,
1983.

[4] K. STEIGLITZ AND T. W. PARKS, What is the Filter-Design Problem?, Proc. 1986

Princeton Conference on Information Sciences and Systems, Princeton, NJ.

