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As Atkin points out, representations involving iV-dimensional objects are difficult to 
illustrate for N > 3, and yet "in the realm of social science the Euclidean spaces 
which can accommodate the various mathematical relations will commonly be of 
much greater dimension than the 3-dimensional structure demanded by the physicist". 
In figure 1 we compare the two simplicial-complex diagrams of the matrix with the 
single bicoloured-graph representation There are no dimensional constraints on the 
drawing of bicoloured graphs in the plane such as we find with multidimensional 
simplicial complexes, and the duality of X C U x W and X"1 Q W x U is seen to be 
democratically preserved in the graph representation: it all depends on whether one 
looks from the set U across to W, or from W back across to U. Readers of Atkin's 
work will note that the degree d(u{)- 1 is the dimension of the simplex ut , and 
similarly for vertices in W. Other structural features described by Atkin in terms of 
simplicial complexes have their parallel in the terminology of bicoloured graphs. 
Indeed for many practitioners the language of graph theory could well be less 
forbidding than that of combinatorial topology. 
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Figure 1. The diagrammatic representations of Atkin's matrix (a) as: (b) a bicoloured graph; 
(c) the simplicial complex KW(U; X); and (d) its conjugate Ku(W; X""1). 
1.2 Example 2 (March, 1976; Mitchell et al, 1976; Matela and O'Hare, 1976; 
Earl, 1977) 
In March (1976) it is proposed to use a minimal representation for patterns based on 
a rectangular grid. Since a grid is involved, bicoloured graphs may be used in 
representing such designs. The 'rows' of the grid form the set U, and the 'columns' 
of the grid constitute the set W, In most cases the minimality criteria for the 
representation imply that the bicoloured graph has no isolates (or vertices not 
incident to an edge). 

Three types of gridiron patterns may be distinguished (figure 2): 2-patterns in 
which the square faces of the grid form the elements of the design (for example, a 
set of city blocks in New York City); 1-pat terns in which the lines of the grid make 
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up the elements of the design (for example, a set of streets and avenues between 
blocks in New York); and O-patterns in which the points of the grid contribute the 
design elements (for example, a set of street intersections in New York). 2-patterns and 
O-patterns are in a mathematical sense dual concepts, but 1-patterns are different and 
this can be seen in the structure of the bicoloured graph representation. For an (ra, n) 
grid, 2- and O-patterns are representable as subgraphs of Km> n, the complete (m, n) 
bicoloured graph, whereas 1-patterns are modelled by subgraphs of Km> „_x U Km-lf n. 

An example of a 2-pattern is a polyomino discussed in an architectural context by 
Matela and O'Hare (1976), whereas a representative of a 1-pattern is the rectangular 
dissection introduced into design literature by Steadman (1973). 
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Figure 2. The representations of gridiron patterns on a (2, 3) grid in matrix and bicoloured-graph 
form: (a) a 2-pattern and its bicoloured graph G2 C K2is\ (b) a 1-pattern and its bicoloured graph 
G\ = G22 U G2i, where Gn C ^:2j 2 and G2i - Kh3; and (c) a 0-pattern and its graph G0 C ^ 3. 

1.3 Example 3 (Fawcett, 1976a; 1976b; 1977) 
In his studies of adaptability in school buildings, Fawcett takes a set U of activities, 
\Ui , W2? —a un\-

u j demonstrations/practicals; 
u2 reading/writing; 

un physical experiment; 
and a set W of space types, {w1? w2, ..., ww}: 

Wj all-purpose laboratory; 
w2 light practical room; 

wm seminar room. 
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He defines a relation X C {] x W showing which activities may feasibly take place in 
which types of space. The example we illustrate in figure 3 is taken from Fawcett 
(1976b). 
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Figure 3. The diagrammatic representation of Fawcett's matrix as a (4,4) bicoloured graph. 

1.4 Example 4 (Bolker and Crapo, 1977; Crapo, 1977) 
Recently it has been shown that minimal bracing schemes of a (m, n) rectangular 
framework correspond to spanning trees of the complete (m, n) bicoloured graph. 
Bolker and Crapo make U the set of east-west (E-W) halls in the framework and W 
the set of north-south (N-S) halls. The relation X C JJ x W is an incidence relation 
indicating whether or not a particular bay of the framework (at the intersection of a 
E-W hall and a N-S hall) is cross-braced. Figure 4 shows an example from their 
joint paper (Bolker and Crapo, 1977, page 132). 
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Figure 4. A rigid bracing scheme on a (3, 3) framework with its corresponding representations as a 
matrix and a bicoloured graph. The graph in this case is a spanning tree since the bracing is minimal. 

1.5 Discussion 
Widely different kinds of design problem may be represented by bicoloured graphs. 
The four examples indicate certain features of bicoloured graphs which are likely to 
interest the designer. In all four cases the bicoloured graphs do not have isolated 
vertices. This is likely to be a common feature of many design situations represented 
in this way. The reason for this is intuitively understandable. It would be unusual 
for a designer to consider elements which are unfelated to the problem he is studying. 
In Fawcett's case, every space that the designer provides will be expected to 
accommodate some activity, and every activity the designer is asked to consider will 
be provided for by a suitable room. This is a different situation from that faced by 
the school administrator who may allocate activities in such a way that some rooms 
may be left empty, or who is unlikely to plan for all possible activities to occur 
simultaneously in the timetable on each and every occasion. The administrator's task 
is to find a matching (Bondy and Murty, 1976) on the designer's bicoloured graph of 
feasible activity/space pairs. The designer who plans for adaptability will be interested 
in the set of all possible matchings from which the administrator might choose in the 
future. However, this is not our problem here. 

In the case of cross-bracing a rectangular framework, it seems obvious that each 
hall must contain at least one brace if the structure is to be rigid and that the set of 
bicoloured graphs representing bracing schemes will be restricted to those with no 
isolates. So much for our interest in bicoloured graphs with no isolates. We now 
turn to the question of labelling. 
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Our first three problems clearly made use of labelled graphs, but returning to the 
problem concerning adaptability in school buildings we find that Fawcett (1976b) 
comments that 

"We can take account of or ignore the distinctions of elements within types in 
four ways: 

spaces 

non-distinct distinct 

non-distinct 
activities 

distinct 

The actual measure of adaptability that we arrive at for given activity and spatial 
schedules will vary depending on which way we decide this issue ...". 

The issue, in other words, of labelling or not labelling is of some consequence in 
design problems such as those addressed by Fawcett, but in the portrayal of gridiron 
patterns it is clearly important that the bicoloured graph is labelled since the labels 
correspond to the geometrical coordinates within the grid. However, equivalent 
gridiron patterns may be obtained through the symmetry operations of rotation and 
reflection on the rectangle or square. This equivalence condition requires that the 
labels of the two sets U and W are permuted as follows: 

U: (1 m) (2 m-\) ... and W: (1 n) (2 w-1) ... , 

and when m = n we also have the permutation 

U, W: (ux w1)(w2 w2) ... 

in which the sets U and W are interchanged. 
Most geometrical design problems are unlikely to show equivalence under complete 

permutation of the rows and columns of the grid; that is, under the action of the 
symmetric groups Sm on U and Sn on W. However, this turns out to be true of the 
bracing schemes studied by Bolker and Crapo. These authors have shown that cross-
braced rectangular frameworks are structurally equivalent under such permutations. 
It is therefore useful in this and possibly other design contexts to enumerate 
unlabelled bicoloured graphs. 

We will demonstrate the equivalence between binary (zero-one) matrices and 
bicoloured graphs. The matrix representation is algebraic, the graph-theoretic depiction 
is structural, and the two are fully interchangeable. The graphical viewpoint lends 
itself admirably to the handling of structural symmetry by means of the automorphism 
group of a graph. The enumeration question at hand is then the determination of the 
number of unlabelled bicoloured graphs with no isolated points. We shall see that the 
most difficult aspect of this problem has already been solved, as the total number of 
bicoloured graphs has been found. Building on this previous result, we derive the 
desired formulae. In addition we shall present tables of numerical values. 

All technical terms not explained here can be found in Harary and Palmer (1973). 

2 Binary matrices versus bicoloured graphs 
Our examples in section 1 have served to illustrate the correspondence between the 
binary (zero-one) matrices with positive row and column sums studied by Jackson 
(1976) and bicoloured graphs with no isolated points. 

I 

III 

II 

IV 
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An (m, n) bicoloured graph G has m umber points in the set U and n white points 
in the set W, with two points adjacent only if one is umber and the other is white. 
The construction of the m x n adjacency matrix A of a given bicoloured graph G 
whose points are coloured umber, U = {ux, u2, ..., um}, or white, W = {wt, w2,..., wn}, 
is given at once by setting atj = 1 whenever ut and Wj are adjacent and atj = 0 
otherwise. Obviously this gives a one-to-one correspondence between bicoloured 
graphs and binary matrices. The zth row sum and the /th column sum of matrix A 
give the degrees of the points u( and Wj. By definition an isolate, or isolated point, is 
not incident with any lines. Hence a binary matrix has positive row and column sums 
if and only if its bicoloured graph has no isolated points. 

When the labels ux, u2, ..., um of the umber points and wx, w2, ..., wn of the white 
points are fixed, the result is called a labelled bicoloured graph. However, the 
structure of a graph is determined by its isomorphism class rather than its particular 
labelling. For example, we show in figure 5 another labelling of the spanning tree 
shown in figure 4 and its corresponding adjacency matrix. 
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Figure 5. Another rigid bracing of the framework shown in figure 4. This is equivalent to another 
labelling of the bicoloured graph shown in that figure under the permutations (uiU2)(u3) and 

3 Bicoloured graphs 
Let bmt n be the number of bicoloured graphs with m umber points and n white 
points. The perusal of figure 6 verifies that b3> 2 = 13, since all the (3, 2) bicoloured 
graphs are displayed. In this figure we use the mnemonic convention that the solid 
points are umber and the open points are white. 

To determine a general formula for bmt n, we require the symmetric group Sm in 
order to take into account the interchangeability amongst themselves of the umber 

Figure 6. The (3, 2) bicoloured graphs. 
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points, and similarly we need Sn for the white points. The combined action of these 
two groups on the mn possible lines joining U and W is given by their cartesian 
product Sm x Sn. In accordance with Polya's classical enumeration theorem, bm^n is 
obtained by substituting 2 for each of the variables in the cycle index Z(Sm x Sn), 
which can be written by use of standard notation as the equation 

bm, n = ZiSm x &n •> 2) • (1 ) 
As shown in Harary (1958), it follows easily that bmy n can be written explicitly in the 
form 

tm,n=r^iSi(iJ) Unwt^. (2) 

In this equation (z, /) denotes the greatest common divisor of i and /. The asterisk on 
the summation sign indicates both in equation (2) and in later equations that the sum 
is taken over all pairs of sequences r1, ..., rm and sl9 ..., sn of nonnegative integers 
satisfying m = Hirt and n = Xz's,. We denote by bm^n^q the number of (m, n) 
bicoloured graphs with q lines. As shown in figure 6, Z?3j 2, 4 = 3. For fixed m and n 
these numbers are conveniently coded by the ordinary generating function defined by 

mn 

<7 = 0 

By Polya's enumeration theorem we obtain a formula for bm^n(z) which is similar to 
equation (1), namely 

bmtn(z) = Z{Sm xSn, 1 + z) . (4) 

Using the known formula for Z(Sm x Sn), we can write an explicit formula for this 
generating function: 

bm,n(z)= ^U(l + z^^Y's^^ UrilSiirt^ . (5) 
»\ i / i 

Here [i, j] denotes the least common multiple of i and /, and (z, /) is the greatest 
common divisor. 

Equations (2) and (5) are most suitable for the computation of numerical values of 
bm> n a n d /3 W } „t q. These numbers will be useful in achieving our goal of counting 
bicoloured graphs without isolates, as will be seen in the next section. 

4 Bicoloured graphs with no isolated points 
Obviously the total number of labelled bicoloured graphs with m umber points and n 
white points, including those with isolates, is 2mn. Jackson (1976) obtained a formula 
for the number of labelled bicoloured graphs with no isolates, having a given number, 
q, of lines. 

Clearly bm, n is the total number of (m, n) bicoloured graphs, including those with 
isolates—see figure 6. We now derive the number b'min of unlabelled (m, n) 
bicoloured graphs with no isolated points, and the number b'm> n>(7 of such graphs 
having q lines. This is most conveniently done in terms of the generating functions 
b(x,y) and b'(x,y) for all bicoloured graphs and for those with no isolates, 
respectively, which are defined by 

oo oo 

b(x,y)= I I bm>nxmy" , (6) 
m = 0 n = 0 

under the convention that bm% n = 1 whenever m = 0 or n = 0, and 
oo oo 

b\x,y)= 1+ I I b'm,nxmyn . (7) 
m = 1 n = 1 



Table 1. The number bmj n> q of (m, n) bicoloured graphs with q lines for 2 < m + n < 10 and 
gives the total number bmt n of (m, ri) bicoloured graphs. 
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Table 2. The number b'm^ n^q of (m,n) bicoloured graphs with q lines and no isolates for 
This table also gives the total number b'mtn of (m,ri) bicoloured graphs without isolates. 
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m> n. Note that for n = 0 there is only one (m, 0) bicoloured graph for all m. This table also 
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The function b(x, y) of equation (6) is known because its coefficients are given in 
equation (2). The formalism in equation (7) of introducing the term 1 on the right-
hand side leads to a neater statement of the results; intuitively it says that the 
'empty graph' has no isolated points (Harary and Read, 1974). The summations can 
then start at m = 1 and n = 1 since a nonempty bicoloured graph with no isolates 
must have at least one umber point and at least one white point. 

The relation between b'(x, y) and b(x, y) which we now derive is based on the 
following observation: an arbitrary bicoloured graph consists of the subgraph induced 
by all of its nonisolated points, together with the required number of isolated umber 
and white points. In terms of generating function this can be expressed by 

b(x9y) = bXx,y)(l+x + x2 + ...)(\+y+y2 + ...) . (8) 

Here the factor l + x + x2 + ... allows for adding 0, 1, 2, ... isolated umber points, 
whereas 1 +y + y2 + ... allows independently for adding 0, 1,2,... isolated white points. 

Relation (8) can now be solved for b'(x, y) by multiplying through by (1 ~x)(\ -y), 
to give 

b\x,y)= b(x,y)(\-x)(\-y) . (9) 

By equating coefficients of xmyn on both sides of equation (9), one sees at once that 
this is equivalent to the recurrence relation 

bm,n = ^ m , n ~~ "m-l, n ~~ &w, 7 2 - 1 + ^ m - 1 , n-\ • ( 1 0 ) 

This recurrence holds for all m, n > 0 provided one understands the value of bitJ- to 
be zero if i or j is negative. It is of course recurrence relation (10) rather than 
generating-function expression (9) that lends itself to the most direct numerical 
implementation by computer. 

If it is desired to compute bm>n>q then the appropriate generating functions to 
start from are defined by 

mn 
b{x,y,z)= I I Z bm,n>qxmy"z<> , (11) 

m = 0 n = 0 q = 0 

under the convention that bm)n>0 = 1 whenever m = 0 or n = 0, and 
oo oo mn 

b\x,y,z)= 1+ I I I b'm,n,qxmynz" . (12) 
m = l n — \ q—\ 

Again the function b(x, y, z) is known because its coefficients can be found from 
equation (5). 

The relationship between b(x, y, z) and b'(x, y, z) is exactly parallel to that 
between b(x, y) and b'(x,y). The reason for this is that adding an isolated point to a 
graph requires no additional lines. Thus by analogy with equation (9) we may write 

b'(x,y,z) = b0c,y9z)(l-x)(l-y). (13) 

Equation (13) is equivalent to theorem 1 of Harary and Prins (1963), and equation (9) 
follows directly by setting z = 1. Equating the coefficients of xmynzq on both sides 
of equation (13), we obtain the recurrence relation 

byn,n,q = "m, n, q ~~ "m-l, n, q ~~ "m, n - 1 , q ~*~ ^ m - 1 , n-l, q • \i^) 

This is valid for all m,n,q>0 provided that btjt k is understood to be zero if / or / 
should be negative. 

Recurrence relations (10) and (14) are eminently suitable for machine computation. 
In tables 1 and 2 are presented selected results obtained by computer for the 
numbers of unlabelled bicoloured graphs, with and without isolated points. 
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5 Further developments 
The problems posed by Fawcett (example 3) in which one set of nodes in a bicoloured 
graph may be labelled and the other set unlabelled may be enumerated by use of 
Em x Sn and Sm x En as required, where E is the identity group of appropriate order. 
The numbers without isolates could be easily obtained by use of a combination of 
the methods for deriving equations (9) and (13) with the methods of Jackson (1976). 

When counting (m, n) bicoloured graphs here, it has been assumed that when 
m = n the colours are not interchangeable. This makes practical sense when the two 
sets U and W refer to different collections of objects (for example, features and 
buildings, activities and spaces, and so on). However, in the case of gridiron patterns 
and cross-braced rectangular frameworks it is clearly possible to exchange E-W halls and 
N-S halls when their numbers are the same. The number bn(x) that enumerates 
bicoloured graphs with n points of each colour is given by Harary (1958): 

Z([Sn]s*,l+x) , bnW (15) 

where [Sn]S2 is the exponentiation of Sn with 6*2. Formulae for bn^q, b'n, and b'n^q 
similar to those for the general (m, n) bicoloured graph are derived by the methods used 
above (tables 3 and 4). Details are given in Harary (1969) and Harary and Palmer (1973). 

It is also possible to enumerate the number of connected (m, n) bicoloured graphs 
(Harary and Prins, 1963)—a problem equivalent to counting the number of bicolourable 

Table 3. The number bn> q of (n, ri) bicoloured 
graphs with q lines in which the colours are 
interchangeable, together with the total number 
of such graphs, bn. 

Table 4. The number b'n} q of (n, n) bicoloured 
graphs with q lines and no isolates in which the 
colours are interchangeable, together with the 
total number of such graphs, b'n. 

Q 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 

bn 

n 

2 

1 
1 
2 
1 
1 

6 

3 

1 
1 
2 
4 
5 
5 
4 
2 
1 
1 

26 

4 

1 
1 
2 
4 
10 
13 
23 
26 
32 
26 
23 
13 
10 
4 
2 
1 
1 

192 

5 

1 
1 
2 
4 
10 
20 
39 
72 
128 
198 
280 
353 
399 
399 
353 
280 
198 
128 
72 
39 
20 
10 
4 
2 
1 
1 

3014 

Q 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 

b'n 

n 

2 

0 
0 
1 
1 
1 

3 

3 

0 
0 
0 
1 
2 
4 
3 
2 
1 
1 

14 

4 

0 
0 
0 
0 
1 
2 
8 
14 
21 
20 
20 
12 
9 
4 
2 
1 
1 

115 

5 

0 
0 
0 
0 
0 
1 
2 
10 
31 
76 
137 
221 
285 
321 
301 
253 
182 
122 
69 
38 
19 
10 
4 
2 
1 
1 

2086 

A7139 A7140
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graphs (a bicolourable graph is one which can be bicoloured). It is well known in 
graph theory that a given graph G can be bicoloured if and only if G has no cycles of 
odd length. The number of connected bicoloured graphs of order p equals the 
number of connected bicolourable graphs of order p. If cm> „ is the number of 
connected (m, n) bicoloured graphs and cm^n^q is the number with q lines then, when 
q = m + n-\, cm,n,q — tmt„, the number of (m, n) bicoloured trees. It is this 
number tm,n that enumerates the bracing schemes of a (m, n) rectangular framework. 

A three-coloured graph may be used to describe a three-dimensional rectangular 
framework in an analogous manner to the bicoloured graph used to represent a two-
dimensional grid. The uses of such a representation in architectural work are likely 
to require labelling. The number of /c-coloured graphs on labelled nodes was 
reported in Read (1960). Without labels it is worth noting that, more generally, 
Robinson (1968) devised a formula for counting /c-coloured graphs in which the 
colours are interchangeable. Such graphs without isolates can also be enumerated. 

Labelled /c-coloured graphs have recently been studied in the context of engineering 
analysis (Onadera, 1973; Onadera et al, 1977) since they represent those branches of 
a network which 'tear' it into /c-component subnetworks according to the diakoptical 
methods of Kron (1963). 'Tearing' a complex engineering system in this way 
corresponds to Alexander's (1964) aim of decomposing an architectural design 
problem into a set of subproblems. The enumeration of distinct, nonisomorphic 
structures (unlabelled /c-coloured graphs) may therefore be of some interest to 
design theorists examining diakoptical or decomposition techniques. 
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