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Completely Replicable Functions

D. ALEXANDER, C. CUMMINS, J. McKAY, & C. SIMONS

Abstract. We find all completely replicable functions with integer coeffi-
cients, tabulate the new ones, and summarize the computations needed.

Monstrous moonshine. To each conjugacy class of cyclic subgroups, (m),
of the Monster simple group, M, a modular function, j(m)(z), was found
empirically in [CN] for which the g-coefficients (Fourier coefficients) are the
values of the trace in the so-called head representations. For the identity
subgroup the function is the elliptic modular function J(z) = j(z) — 744.
Here, and throughout, the computations are simplest to describe if we as-
sume all our g-series to have constant term zero.

Replication. Replication enables us to associate with a formal g-series

f=Y ad, as1=1, a=0, (1)

i=-1

a; € C, certain functions of the same form, called the replicates of f. Al-
though f is a formal g-series, it is useful to write f = f(z), where ¢ = e2"%*,
consistent with the properties of modular functions. We tacitly omit de-
scribing the Galois action [IN], which is trivial when the g-series coefficients
are rational integers.

The prototypical replication relation is that between the monstrous moon-
shine function j(m)(2) for (m) C M and its p'® replicate j(ms)(2) for (m?).
Conway and Norton [CN] note that monstrous moonshine functions satisfy
identities involving f and its replicates which they call replication formulae.
A replicable function is a function with a g-expansion of the form (1) for
which replicates exist. Such functions also satisfy the replication formulae.

Norton [N] has conjectured that a function ¢7! + 302, ai¢',a; € Z,i > 1,
is replicable if and only if either a; = 0 for all ¢ > 1 or it is the canonical
Hauptmodul for a group of genus zero, containing I'¢(N) for some N and
containing z — z + k precisely when % is an integer.
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Hecke Operators. Motivation for introducing the twisted Hecke operator
T, derives from the action of the standard Hecke operator, T, , on J(z) =
J(2) — 744, given by

Na== 3 J(az +b/d) = Pu(J())/n 2)

ad=n
0<b<d

which value is a polynomial in J since the sum is invariant under the modu-
lar group and J is a Hauptmodul holomorphic in the upper half-plane. Note
that P, is the unique polynomial such that P,(J(z)) has a ¢g-expansion ¢~ "
mod ¢Z[gq].

We introduce a twisted Hecke operator T, which, like T}, , acts linearly
on g-coefficients yet takes certain functions f(z) to Pn(f(2))/n.

More precisely, we call a function f replicable if there are replicate func-
tions {f(®} such that

P(fE)n== 3§ (az +8)/d), (3)

ad=n
0<b<d

with P,(f(z)) = ¢~" mod ¢Z[q], and we define f|T, to be the right side of
(3).

The monic polynomial P,(t) € Z[a;,as,...,a,—1][t] is unique and we
shall abuse notation by using P, to denote the polynomial in each case.
This definition of 7T, is provisional since we have not yet incorporated the
Galois action.

Note that J(z) of level N =1 is the sole normalized modular function on
which the Hecke operators T, act as in (2) for all n, since (N,n) = 1 for
all n. Replicable functions are defined so as to share this property under
the action of the twisted Hecke operator T.,. In this case, however, the sum
involves both f and its replicates.

From Norton [N] it follows that

n

S Bl n - ne(se) - 1), (4)

and so Pi(t) = t, Po(t) = 2 — 2a4, P3(t) = t* — 3a;t — 3ay,... .
We define coeficients {Hp, .} by

I = LPu(f(2)) =24+ ) Hmag™, n21, (5)

m=1
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so that Hy, , is the coefficient of ¢™ in f ]Tn and Hy,  is the coefficient of
™ in f (denoted H,, by Norton).
We find that P,(t) satisfies the recurrence relations:

T—2

P(t)=1, rar1+ Y aPrpa(t)=tPi(t), r=12,... (6)

k=-1

while ﬁr,s = (r + s)H, , satisfies

r—1 s-~1

= ("' + S)Hr+s—l + Z Z Hm+n—1ﬁr—m,s—n- (7)

m=1n=1

Norton has another definition of replicability that is somewhat easier to
use in practice.
A function f is replicable if Hy, , = H, , whenever mn = rs and
ged(m,n) = ged(r, s).
This is equivalent to the definition given above: assume f is replicable in
Norton’s sense, then set

)= 3 Py ®)

i=—1
where * _ - B _p o
@ = kY wd)Hy gp;  §>0, a2} =1, =0 (9)
djk

and p is the Mdbius function. It follows that f(1) = f. For any pair r,s €
Z>°, we find, by Mdbius inversion, that

1
r,rs Zd E":a/dz (10)

d|r

and, since f is replicable under Norton’s definition, this implies that

1
= Y e (11)

dj(m,n)

which, from (5), gives (compare Serre [S, Chap.VII, §5.3])

~

fi= PR CEL ) (12)
0<b<d
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Conversely if f has replicates which satisfy (12) it follows that the Hp, , of
(5) satisfy (11) and so f is replicable as defined by Norton.
When n = p, a prime, we see that

pf1T, = FP(p2) + 3 F((= + K)/) (13)

k=0

In terms of the standard operators U, and V, where

. n n
Up $Qnqd — apnq ,

. n n
V;) tanq" = ang®™”,

we have R
pfITy = FI(YPV, + pUp) = Pp(f(2)) (14)

where WP acts as an Adams operator (see Mason [Mas]); equivalently we
may compute f®) from

F®(pz) = Py(£(2)) — pf|Up. (15)

Complete replicability. A function is completely replicable if it and all
its replicates are replicable. One would expect properties of the monstrous
moonshine functions to be shared by the completely replicable functions
(and they are). At the end we tabulate all non-monstrous completely repli-
cable functions with rational integer coefficients. Complementary monstrous

data are found in [CN] and [MS].

Method of Calculation. To find all completely replicable functions, we
computed the larger class of all completely 2-replicable functions. These are
functions whose iterated duplicates are replicable. Table 1 of [N] contains
a list of all completely 2-replicable functions satisfying f® = f. We call
g a replication p** root of f if ¢ = f. With a small prime =, the repli-
cation square roots of these functions are found by first testing all choices
of aj,a;,a3 and as mod 27 for replicability using replication identities and
identities derived from them (see [CN]). Solutions are then lifted by =-adic
approximation using identities up to Hiss = Hs 29 so that the solutions
found mod 2, for some prime , lift uniquely to 2%,k > 1.

These calculations require further coefficients which are computed from
a1,a2,a3,as and the coefficients of f(? via the generalized Mahler recur-
rence relations [Mah] (compare [B]) derived from:

F(r2) + f(m2) + FP(mz) = f(2) - 2ai,
(16)
(F(n12) + F(2) fB(m22) + f(w02) f(112) = 202 f — P +2(as — a1)
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(10 (11 (2 0\,
70—02)71—02772"‘01v

namely, for k > 1:

where

k-1
172 (2)
a4k = azk+1 + Zajazk-j + 2(ak —a;”),
j=1
k
1/.2 (2) 172 (2)
skt1 = Gzk4s + ) aj02kta—j + 3(ak4r — akyy) + 3(adk + a3y)
i=1
k-1 2k—-1
) .
—aazk+ Yo a—si+ Y (-1)ajask—,
. (17)
Ask42 = G2k42 + Zaja2k+1—ja and
i=1
k+1 )
17,2 2
sk+3 = O2kta + ) Gja2k+3—j — 3(A3k41 — B3y
=1
k 2k
) .
— a2a2k41 + Z a§~ )a4k+2—4j + E(—l)’aja4k+2-j.

Replication square roots are repeatedly extracted until functions which have
no replication square roots mod 27 are found. In addition the prime power
maps are calculated. In each case enough coefficients of the p** replicates
of the non-monstrous functions are computed from (15) to reduce the num-
ber of candidate functions to at most one. A useful check is given by the
congruence:

fP=f (modp).

Programs in Ford’s language ALGEB [F] were written from procedures
generated by Maple [M]. For the functions ¢~! and ¢! + ¢ we found no
prime for which the solutions mod 27 lifted uniquely to 27%, k > 1. The
function ¢~! — ¢ is a root of ¢7! + ¢ and we have assumed that no other
roots of these functions exist. The recursive relations given here, together
with the monstrous data in [CN] or [MS], determine the g-series.

Table. The table contains the initial coefficients a1, az2,as, and as of 157
non-monstrous, completely replicable functions, which we believe to be the
complete set. Each function is described by a number which is its “repli-
cation level”, together with a small letter identifier; the prime power-maps
follow. Capital letter identifiers indicate monstrous functions, for which
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ATLAS notation is used as in [CN]. The ghosts [CN] 25Z, 49Z, and 50Z
appear here as 25a, 49a, and 50a.

Non-monstrous completely replicable functions

f Power maps a; ag as as

la 1 o0 0 0

! 1b o o 0 0
2a 1A -492 0 -22590 -367400

2a is A7242 26 1la 10 0 0
4a 2A 76 0 -702  -5224

da is A7250 sa 1A -6 20 15 0
6a SA 2a .88 o0  -158 -718

6a is A7260 éb SA 2a 21 o0 171 745
6c S8SB 2a 6 0 9 16

plus many more g4 3¢ 2a 16 -8 o 28
8a 4A 20 0 -62 -216

8b 4B 8 o -8 48

8c 4B -8 o0 -8 -48

9a S8A 0 14 0 es

ob  SA 9 -4 0 2

9¢ 3B 0 -4 0 2

od sC -8 2 0 5

10a B5A 2a 8 o 35 100

10b Ba 2A 2 -4 7 0

10c 5a 2a -2 o -5 0

12a 6A 4B “11 o -21 -55

12b  6A da 5 o 27 41

12¢ 6C 4C 5 o0 -5 9

12d 6C 4D -3 o s -7

12¢ 6d 4B 4 o0 0 -4

12f 6d 4a 4 0 o -4

14a TA 2a -9 0 -15 -338

14b 7B  2a -2 o -1 2

14c 7TA 2a 5 o 13 87

15a B5A 8C 5 -2 0 -1

15b 5a  SA s 2 -3 0

16a 8B 0o o ) 0

16b 8B 4 o -2 8

16c 8B 4 o0 -2 -8

16d 8D o o -2 o

16e 8C 2 o -2 4

16f 8C 2 o -2 -4

16g 8b 2 o 2 -4

16h 8b 2 o 2 4

18a 9b  6A 1 4 ) 10

i8b 9a 6b 0o o ) 7

18c 9A 6c 3 o 9 16

18d ©c 6B 0 4 0 10
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80a 40B 16a
82a 41A 2a

oo
-
[
S -}

84a 42A 28a 12b -2 [} -1 -1
80a 45a 30B 18a 1 -1 0 0
90b 45b 30A 18d o -1 0 0
968a 48g S2a 0 1] 1] 1]
102a 51A 384a 6a 1 0 0 1
117a 89A fa (1} 1 0 0
120a 60B 40a 24a o 0 D] 1
126a 63a 42a 18b 0 0 0 0
182a 66A 44a 12a (1} 0 1 0
140a T70A 28a 20a 1 0 0 0

We correct an error in [MS]: On page 265 class 297 should read 25Z and
signs should be inserted compatible with its sign pattern.
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