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KEVIN BROWN’S ENUMERATION PROBLEM

Let ¥, denote the symmetric group on the numbers {0,1,...,n — 1}. For 7 € %, form
the sum

n—1
(1) S(m) =Y (w(i) + w(i+1))%

i=0

Here we consider 7 to have period n, so that m(n+1) = m(1). Let v(n) denote the number
of distinct values that S(7) takes on, as 7 runs over all n! members of ¥,. Kevin Brown
(kevin2003@delphi.com) notes the values of v(n) for 1 <mn < 10, and then continues

... Can anyone supply more terms of this sequence? Or give an asymptotic
formula for the kth term? Does the sum of the inverses of these numbers converge?
This seems like a difficult enumeration problem ...

Put
n—1
(2) T(m) = ()i + 1).
i=0
Clearly,
n—1
(3) S(m)=2T(r)+2) i
i=0

;From this we note that all values of S(r) are even, and that the values of S(r) and of
T(w) are in one-to-one correspondence. Consequently it suffices to study T'(r).
To measure the range of values of T'(7), we put

(4) m(n) = wnenEIi T(m), M(n) = max T().

First we note that

on3 — 3n? — 11 18
(5) M(n) = n n c nt (n>2).

This is achieved by the permutation
, , 21 (0 << [252]),
(6 i) = { .

To demonstrate that M(n) can be no larger, it suffices to prove that
(7) M(n +1) < M(n) +n® -2,

1



and then induct. To establish the above, suppose that 7 € ¥, and that the number n is
to be inserted between two adjacent members (say = and y) of 7. When n is introduced,
the quantity 7 is increased by n(z + y), and decreased by zy (since x and y are no longer
adjacent). Thus the total change is nx + ny — xy. This is an increasing function of x, and
also of y, and hence it is maximized when z and y are as large a possible—that is, when
z and y are n — 1 and n — 2 in either order. Thus we have (7).

As for m(n), it seems that

% (n odd, n > 1),
(8) m(n) =

"3_43”2'@ (n even, n > 2).
When 7 is odd, this is achieved by the permutation
0 (i =0),
(9) m(i)=< n—1 (iodd,1<i<n-—2),
i—1 (teven, 2<i<n-—1).

When n is even it is achieved by the permutation

(0 (i = 0),
n—1i (iodd,1<i<n/2),
(10) m(i)=< i—1 (ieven, 2<i<n/2),
i—1 (10dd,n/2<i<n—-1),
(n—14i (ieven, n/2<i<n-—2).

It should be possible to show that m(n) is not smaller than given by (8). In any case, (8)
is not far off the mark, since it is easy to show that

3_ 9,2
n> —3n°+ 2n (n>1).

m(n) > >

To prove this it suffices to note that Cauchy’s inequality gives

nQn—l (

v(n) < M(n) —m(n) + 1.

I conjecture that equality holds here, for all n > 7. That is, I conjecture that

Y+ m(i+1 ))2 < nS(m),

|M‘|

and then apply (3).
Clearly

(11) v(n) =

n®—16n+30

{ 713—_12%& (n odd, n >7),
6

(n even, n > 8).
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Our conjectures are supported by the values in the following table.

n m(n) M(n) v(n)
1 0 0 1
2 0 0 1
3 2 2 1
4 5 9 3
5 12 23 8
6 22 46 21
7 38 80 43
8 59 127 69
9 88 189 102
10 124 268 145
11 170 366 197
12 225 485 261
13 292 627 336

To discern the statistical distribution of the numbers T'(7), we think of this quantity
as a sum of n random variables. Each summand has expectation n?/4+O(n), and variance
7n*/144 + O(n?). The summands are not independent, but they are nearly so, and hence
it ought to be possible to use tools of probability to establish a form of the central limit
theorem for this situation. That is, it should be possible to show that if o and 3 are fixed,
« < (3, then the proportion of 7 € %, for which

3 3
' 7 5/2 n 7 5/2
= - <T(r) < — —nb
& TV 1" (M) = 7 5V 14g"
tends to
1 3
— / ev /2 du = ®(8) — ®(a)
27 Ja
as n tends to infinity. In particular, by this approach it should be possible to show that
v(n)
n5/2
as n — 00.
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