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We will examine variations of four famous arithmetical functions. For a given
function y, let x* denote its unitary analog, X its square-free analog, and Y’ its
unitary square-free analog. The meanings of these phrases will be made clear in each
case. At the end, the infinitary analog ., will appear as well.

0.1. Divisor Function. If d(n) is the number of distinct divisors of n, then
Zd = NIn(N) + (2y — 1)N + O(V'N)

as N — oo, where 7 is the Euler-Mascheroni constant. Let us introduce a more
refined notion of divisibility. A divisor k£ of n is unitary if £ and n/k are coprime,
that is, if ged(k,n/k) = 1. This condition is often written as k||n. The number d*(n)
of unitary divisors of n is 2¢(, where w(n) is the number of distinct prime factors
of n. This fact is easily seen to be true: If pi*p5? - - - p& is the prime factorization of
n, then the unitary divisors of n are of the form p**p52*2 - - - pir® where each ¢; is
either 0 or 1. There are 2" possible choices for the r-tuple (g1, ¢s,...,¢,); hence the
result follows. We have [1, 2, 3, 4, 5]

Zd* _ —Nl (V) + fQ (27— - %g’(z)) N+ O(VN),

where ((z) is the Riemann zeta function and ¢'(z) is its derivative.

A divisor k£ of n is square-free if £ is divisible by no square exceeding 1. The
number d(n) of square-free divisors of n is also 2¢("); the divisors in this case are
of the form p'p5?---pir. Therefore the same asymptotics apply for d(n), but the
underlying sets of numbers overlap only somewhat [6].

Define d’(n) to be the number of unitary square-free divisors of n. A more com-
plicated asymptotic formula arises here [7, 8:

Zd’ = —Nl (N) + 6‘;‘ (27 —1- %c’(z) +X> N 4 O(V'NIn(N))
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where
1 (2p+ 1) In(p)
o= 1 — —— ) =0.70444220009..., X =
1;[( p(p+1)) Zp:p+1 )(p*+p—1)

and we agree that the product and sum extend over all primes p. The constant « is
the same as what is called 72P/6 in [9].
We finally give corresponding reciprocal sums [10, 11, 12]:

VIV &1 p ) _ 0.9692769438..
lim 1)1
: N nz_; d(n) \/_ H ' ( -1

N—oo \/E

YN 1 Iy 10969831191
VTN z_:d*( Y H —1

The former sum was mentioned in [13] with regard to the arcsine law for random
divisors. It is not known what constant emerges for 1/d'(n).

0.2. Sum-of-Divisors Function. If o(n) is the sum of all distinct divisors of n,
then

N 2
Y o(n) = %M +O(NIn(N))
as N — oo. Let 0*(n) be the sum of unitary divisors of n and &(n) be the sum

of square-free divisors of n. Although d*(n) = d(n) always, it is usually false that
o*(n) = a(n) [14]. We have [15, 16, 17, 18]

2

N
&EDOOWZ" ~120(3) z}ﬂoﬁg

Further, if o'(n) is the sum of unitary square-free divisors of n, then [15]

1 , 1 1 0.8815138397...
J\}EHOOWZUM)_iH(l_p?(erl))_ 2 ’

n=1 p

a constant which appeared in [19] and turns out to be connected with class number
theory [20, 21, 22].
Corresponding reciprocal sums are [23, 24]

S vV + v+, Y —

o(n)

S~ V) + Vsl Y= )

n=1 n=1
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where Yi—];[f(P% Ezg(p—lzﬁ((;))ln(p)?

%:1;[<1‘p51§pj<p3+1>>’ n:§<phz(9p)—h;(p)§p”<pji+l>>’

-3 (h(p)pi“@) gpj@ji +1>) - f=1- <p;1>2 i e
g(p)zi(pj_l){pjﬂ_n, h<p>=1—p’il:pf<pj+11+1>‘

No one seems to have examined 1/&(n) or 1/0'(n) yet.

0.3. Totient Function. If ¢(n) is the number of positive integers k < n satisfying
ged(k,n) = 1, then [25, 26]

S eln) = %NQ + O(N In(N))

n=1

as N — oo. Define ged, (k,n) to be the greatest divisor of k that is also a unitary
divisor of n. Let ©*(n) be the number of positive integers k < n satisfying ged, (k,n) =
1. Since ged, is never larger than ged, it follows that ¢* is at least as large as ¢. Also
let (n) be the number of positive square-free integers k < n satisfying ged(k,n) = 1.
We have [15, 27]

1 N 1 N 3
]\}E’I;om;(p (n) = 504, J\}l—{noo N2 ZSO(”) = F&

where « is as defined earlier. The case for ¢'(n) remains open.
Corresponding reciprocal sums are [23, 24, 28]

N N
1 1
Y ——~ ZiIn(N) + Zi(y — Za), —— ~ Z3In(N) + Z3(y — Zs + Z5 + Zs)
= o(n) £ p*(n)
where
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In(p) v(p) In(p)
% zp:p D) ® Zp: p*u(p)
o1& A - 1
W= T ey O L ey

0.4. Square-Free Core Function. If £(n) is the maximal square-free divisor of
n (also called [9] the square-free kernel of n), then [15, 17, 18, 29, 30, 31]

R(n) = SN+ 0 (N*?)

NE

n=1

as N — oo, where « is as before. Assuming the Riemann hypothesis, the error
term can be improved to O(N7/°*¢) for any & > 0. If #/(n) is the maximal unitary
square-free divisor of n, then [30, 31]

N
> K(n N2 +0 (N?/?)
n=1

where

p? +p 1
= 0.6496066993....
7= 1;[ ( P*(p+1) )

0.5. Infinitary Arithmetic. We continue refining the notion of divisibility [32,
33]. A divisor k of n is biunitary if the greatest common unitary divisor of k& and
n/k is 1, and triunitary if the greatest common biunitary divisor of k& and n/k is 1.
More generally, for any positive integer m, a divisor k of n is m-ary if the greatest
common (m — 1)-ary divisor of k and n/k is 1. We write k|,,n. Clearly 1|,,n and

When introducing infinitary divisors, it is best to start with prime powers. Let p
be a prime, and let x > 0, y > 1 be integers. It can be proved that, for any m > y—1,
p*|mpY if and only if p*|,_1p¥. Thus we define p*|.pY if p*|,—1pY. For fixed y, the
number of integers 0 < z < y satisfying p”|op? is 2°¥), where b(y) is the number
of ones in the binary expansion of y. Define as well 1|1. The sum ZZ:) 200) g
approximately 2()/1"(2) but is not well behaved asymptotically [34].

We now allow n to be arbitrary. A divisor k of n is infinitary if, for any prime p,
the conditions p*||k and pY||n imply that p®|.p?. We write k|.on. Clearly 1|,,n and
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n|sn. Each n > 1 has a unique factorization as a product of distinct elements from
the set _
I = {pw : p is prime and j > 0};

each element of [ in this product is called an I-component of n. It follows that k|.n
if and only if every I-component of £ is also an I-component of n.

Assume that n = PP --- P, where P, < P, < --- < P, are the I-components of
n. The infinitary analogs of the functions d and o are defined by [35, 36]

t

do(n) =2, owln) = [[(P+1),

i=1
for n > 1; otherwise dy(1) = 0x(1) = 1. Two infinitary analogs of the function ¢

are known:

©oo(n) = the number of positive integers k < n satisfying ged (k,n) = 1;

@m(n)IH(H—l):nHG—%) forn>1, ¢ (1)=1

i=1
It is generally untrue that ¢_(n) = ¢ (n). No similar extension of the function & is
known. Cohen & Hagis [35, 37] proved that

.1 A
Jim = Z: 0oo(n) = 5 = 0.7307182421...,
1 N

Jim Z; P (n) = = = 0.3289358388...,

1 N
= Y do(n) ~ CNIn(N) + DN ~ 2(0.3666252769...)N In(N)
n=1
where
1 1 1
A= (1+—>, B:H(1——), C:H<1——>
ey P(P+1) B P(P+1) P (P+1)2

but no such expression for D yet exists. It is known that ¢ (n) = n?/o(n) +O(n?)
for any € > 0; reciprocal sums involving d.., 0o and @, also remain open. Alternative
generalizations of unitary divisor have been given [38, 39] but won’t be discussed here.
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0.6. Addendum. The constant X, which is associated with counting unitary
square-free divisors of n, was evaluated in [40] to be 0.7483723334.... The series
> <n 1/d(n) connected with (0.5468559552...) N In(N)~1/2 was mentioned in [41, 42],
as well as a numerical value 0.6728... for Y;. Other values of Y;, Z; remain open. An
analog of d’(n), corresponding to unitary cube-free divisors of n, can be studied [8, 40].
The probability that & randomly chosen integers are unitary coprime is [43]

(-5

The probability that they are pairwise unitary coprime is more complicated: for
instance, it is

when k = 4. Expressions for arbitrary k& appear in [43].
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