Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
A008950
Increasing length runs of consecutive composite numbers (starting points).
7
4, 8, 24, 90, 114, 524, 888, 1130, 1328, 9552, 15684, 19610, 31398, 155922, 360654, 370262, 492114, 1349534, 1357202, 2010734, 4652354, 17051708, 20831324, 47326694, 122164748, 189695660, 191912784, 387096134, 436273010, 1294268492
OFFSET
1,1
COMMENTS
There are runs of n consecutive composite numbers for every n. For example, the n numbers (n+1)!+2 ... (n+1)!+n+1 are composite. Such a run may start of course earlier than this. - Joerg Arndt, May 01 2013
LINKS
Jens Kruse Andersen, Table of n, a(n) for n=1..74 (using A002386)
Jens Kruse Andersen, The Top-20 Prime Gaps
Jens Kruse Andersen, New record prime gap
Jens Kruse Andersen, Maximal gaps
Eric Weisstein's World of Mathematics, Prime Gaps.
J. Young and A. Potler, First occurrence prime gaps, Math. Comp., 52 (1989), 221-224.
FORMULA
a(n) = A002386(n+1)+1.
a(n) <= (n+1)! + 2. [Joerg Arndt, May 01 2013]
MATHEMATICA
maxGap = 1; Reap[Do[p = Prime[n]; gap = Prime[n+1] - p; If[gap > maxGap, Print[p+1]; Sow[p+1]; maxGap = gap], {n, 2, 10^8 }]][[2, 1]] (* Jean-François Alcover, Jun 15 2012 *)
CROSSREFS
Sequence in context: A265185 A240530 A303882 * A045881 A303989 A052578
KEYWORD
nonn,nice
AUTHOR
Mark Cramer (m.cramer(AT)qut.edu.au). Computed by Dennis Yelle (dennis(AT)netcom.com).
STATUS
approved