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Abstract

We claim that the Dirichlet divisor problem and the Gauss circle prob-
lem are equivalent. To do this we conjecture a deep property of the
fractional part function x !→ {x} reminiscent of our tauberian approach
to the Riemann hypothesis [Clo] where we consider the related function
x !→ x−1 #x$.

To the memory of Herbert Wilf.

Introduction
The Dirichlet divisor problem

The Dirichlet divisor problem (DDP for short) consists to find the sharpest
values of θ0 such that we have

D(n) =
∑

1≤k≤n

τ(k) = n log n+ (2γ − 1)n+O(nθ0) (1)

where τ(k) counts the number of divisors of k and γ is the Euler gamma
constant. This can be rewritten using the floor function:

D(n) =
∑

1≤k≤n

⌊n
k

⌋
(2)

As we shall see the formulation (2) is the best one for our purpose. It is
widely believed that θ0 = 1

4 + ε for any ε > 0 is working. Since the earliest
work of Dirichlet who showed using the ingenious hyperbola method that we can
take θ0 = 1

2 few progresses were made. In 1905 Voronoï improved significantly
the bound to θ0 = 1

3 + ε and Kolesnik in 1982 found the slightly better θ0 =
0.324074... [Ivi] and there is continuous work on the subject [Cha] until recently
[BBR]. The best known result is due to Huxley in 2003 [Hux] with θ0 = 131

416 =
0.31490... However we are still far from 1

4 .
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The Gauss circle problem

The Gauss circle problem (GCP for short) is related to the counting function

G(n) =
∣∣(x, y) ∈ Z2 : x2 + y2 ≤ n2

∣∣ =
∑

1≤k≤n2

r2(k) = πn2 +O(n2θ!
0 ) (3)

where r2(k) denotes the number of ways to write k as a sum of 2 squares.
In order to introduce similarities with the DDP we prefer to use the following
formula due to Gauss and involving the floor function

g(n) := G(
√
n)− 1 = 4

∑

0≤k≤n
4

⌊
n

4k + 1

⌋
− 4

∑

0≤k≤n
4

⌊
n

4k + 3

⌋

so that we have

g(n) = πn+O(nθ!
0 ) (4)

and it is conjectured that θ"0 = 1
4 + ε is again the best possible choice. The

best known result to this date is again due to Huxley in 2003 [Hux] with the
same value as above θ"0 = 131

416 = 0.31490....

Analogies between the 2 problems

Many people feel both problems are related and there are nice surveys about
DDP and GCP and general lattice points counting [IKK, Cha].

A trivial geometric analogy is that DDP counts lattice points under an hy-
perbola and GCP counts lattice points within a circle.

Richert already transformed the circle problem into a divisor problem from
an analytic view point (1957) [Ivi] and Ivic added in his book [Ivi]:

“The approach presented here shows a unified view of the circle and divisor
problem” .

In [Miy] the author provides 2 striking formulas showing another clear an-
alytic similitude between DDP and GCP. But before that Ramanujan himself
stated amazing similar formulas for both problems [Ram][Ber].

Goal of the paper

In this article we aim to show the problems are in fact equivalent and the
consequence of a deep conjectural property of the fractional part function. We
state this main conjecture in section 1.

In section 2 we rewrite DDP and CGP in order to see they fit the main
conjecture.

In section 3 we provide experimental support of the main conjecture using
a conjectural trick based on low discrepancy sequences.

Finally in section 4 we discuss generalisation of the main conjecture and an
analogy with our good variation concept [Clo].
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1 Main conjecture
This is the main conjecture since it encapsulates both DDP and GCP as we will
see in section 2. Here we consider the fractional part function x %→ {x} and for
a given smooth function f Riemann integrable over [0, 1], for 2 fixed real values
λ ≥ 1, µ ≥ 0, we define the integral

If :=

ˆ 1

0
f

({
1

t

})
dt

and the corresponding family of Riemann sums

Sf (N,λ, µ) := λ
∑

1≤k≤N
λ

f

({
N

λk + µ

})

So that we have

lim
N→∞

Sf (N,λ, µ)

N
= λ

ˆ 1/λ

0
f

({
1

λt

})
dt =

ˆ 1

0
f

({
1

u

})
du = If

Then we make the following conjecture relating If to Sf (N,λ, µ). This
conjecture tells us that the fractional part function has a very deep intrinsinc
property. We provide a weak form, a stronger from and the strongest form we
believe to be true so far.

1.1 Main conjecture
Weak form

Suppose f(x) = x then for any λ ≥ 1, µ ≥ 0 we have ∀ε > 0

Sf (N,λ, µ) = (1− γ)N +O
(
N

1
4+ε

)

Strong form

Suppose f is continuous on the interval [0, 1] and of bounded variation, then for
any λ ≥ 1, µ ≥ 0 we have ∀ε > 0

Sf (N,λ, µ) = IfN +O
(
N

1
4+ε

)

More precisely we claim there is a slowly varying function Lf
1such that we

have

Sf (N,λ, µ) = IfN +O
(
N

1
4Lf (N)

)

And for f(x) = x we can take Lf (x) = log x.

1L is a slowly varying function if for any x > 0 we have limt→∞
L(xt)
L(t) = 1.
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Strongest form

In fact we state something more general. Suppose f and g are continuous on
the interval [0, 1] and define

If,g(ν) :=

ˆ ν

0
f

({
1

t

})
g(t)dt

Let

Sf,g(N,λ, µ, ν) := λ
∑

1≤k≤N
λ

f

({
νN

λk + µ

})
g

(
λk + µ

νN

)

Then for any λ ≥ 1, µ ≥ 0 and 0 < ν ≤ 1 we have

Sf,g(N,λ, µ, ν) = If,g(ν)N +O
(
N

1
4Lf,g(N)

)

where Lf,g is a slowly varying function.

Although we don’t provide directly experimental support for this conjecture
in this draft we provide some examples in 2.3.

2 GCP and DDP fit the the main conjecture
We prove that GCP and the DDP fit the weak form of the main conjecture
described in 1.1.. We begin by DDP for practical and not historical reasons.

2.1 DDP
2.1.1 Theorem 2.1.1

We have

T (n) :=
∑

1≤k≤n

{n

k

}
= (1− γ)n+O(nθ0)

where θ0 is the value considered in the formula (1).

Proof Let Hn =
∑n

i=1
1
i then we have

∑

1≤k≤n

{n

k

}
=

∑

1≤k≤n

n

k
−

⌊n
k

⌋
= nHn −D(n)

Next it is known that Hn = logn+ γ +O(n−1) hence using the asymptotic
formula (1) we get

T (n) = (1− γ)n+O(nθ0)
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2.1.2 The DDP fits the main conjecture

Indeed it is well known we have
ˆ 1

0

{
1

t

}
dt = 1− γ

hence letting f(x) = x, λ = 1, µ = 0 we have from the main conjecture and
theorem 2.1.1.

Sf (N,λ, µ) = T (n) = (1− γ)N +O
(
N

1
4+ε

)

implying that θ0 = 1
4 + ε is the best possible choice for the DDP.

2.2 GCP
This is slightly more complicated and we need to split the problem in 2 sums.
We consider g(n) given in the formula (4)

g(n) = 4
∑

k≥0

⌊
n

4k + 1

⌋
− 4

∑

k≥0

⌊
n

4k + 3

⌋

Then we define
S1(n) := 4

∑

k≥0

⌊
n

4k + 1

⌋

and

S3(n) := 4
∑

k≥0

⌊
n

4k + 3

⌋

and we show these 2 sums are divisors problems like via the following theorem.

2.2.1 Theorem 2.2.1

Let θ1 = max(θ0, θ"0) where θ"0 is the value considered in the asymptotic formula
(4). Then we have

S1(n) = n log n+
(
2γ − 1 + log 2 +

π

2

)
n+O(nθ1)

S3(n) = n log n+
(
2γ − 1 + log 2− π

2

)
n+O(nθ1)

and we have also

T1(n) := 4

)n
4 *∑

k=0

{
n

4k + 1

}
= (1− γ)n+O

(
nθ1

)

T3(n) := 4

)n
4 *∑

k=0

{
n

4k + 3

}
= (1− γ)n+O

(
nθ1

)
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Proof of theorem 2.2.1. We have
S1(2n) + S3(2n)

4
= D(2n)−D(n)

Hence from the asymptotic formula (2) we get

S1(n) + S3(n) = 2n log(n) + 2(2γ − 1 + log 2)n+O(nθ0)

And from the asymptotic formula (4) we have

S1(n)− S3(n) = πn+O(nθ!
0 )

Thus letting θ1 = max(θ0, θ"0) and combining the 2 previous formulas we have

S1(n) = n log n+
(
2γ − 1 + log 2 +

π

2

)
n+O(nθ1)

S3(n) = n log n+
(
2γ − 1 + log 2− π

2

)
n+O(nθ1)

In an other hand we have by definition of T1 and T3

T1(n) = n

)n
4 *∑

k=0

1

k + 1
4

− S1(n)

T3(n) = n

)n
4 *∑

k=0

1

k + 3
4

− S3(n)

And we have (details omitted)

•
∑)n

4 *
k=0

1
k+ 1

4
= log(n)− 2 log 2− ψ

(
1
4

)
+O(n−1)

•
∑)n

4 *
k=0

1
k+ 3

4
= log(n)− 2 log 2− ψ

(
3
4

)
+O(n−1)

where ψ = Γ′

Γ is the digamma function yielding

• ψ
(
1
4

)
= −π

2 − γ − 3 log 2

• ψ
(
3
4

)
= π

2 − γ − 3 log 2

Thus we have some simplifications and we get finally

T1(n) = (1− γ)n+O(nθ1)

T3(n) = (1− γ)n+O(nθ1)

proving the theorem 2.2.1.
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2.2.2 The GCP fits the main conjecture

Indeed from theorem 2.2.1 we have

lim
n→∞

1

n
T1(n) = lim

n→∞

1

n
T3(n) = 4

ˆ 1/4

0

{
1

4t

}
dt =

ˆ 1

0

{
1

u

}
du = 1− γ

Hence choosing f(x) = x, λ = 4, µ = 1 we have from the main conjecture and
the theorem 2.2.1.

Sf (n, λ, µ) = T1(n) = (1− γ)n+O
(
n1/4+ε

)
⇒ θ1 =

1

4
+ ε

or equivalently choosing f(x) = x, λ = 4, µ = 3 we have the same thing from
the main conjecture and the theorem 2.2.1.

Sf (n, λ, µ) = T3(n) = (1− γ)n+O
(
n1/4+ε

)
⇒ θ1 =

1

4
+ ε

Hence we have necessarily

g(n) = S1(n)− S3(n) = πn+O(n1/4+ε)

implying that θ"0 = 1
4 + ε is the best possible choice for the GCP.

2.3 Other examples
Many other lattice couting problems or related problems fit our main conjecture
2.1.. We provide some additional examples, the 2 last ones being examples of
the strongest form of the conjecture.

2.3.1 Another circle problem

This is an interesting example of lattice points counting. Let us consider the
hexagonal lattice and the number of lattice points which are within a circle of
radius n centered at the origin, i.e. that is

h(n) = #
{
(x, y) ∈ Z2 : x2 + xy + y2 ≤ n

}

which is the sequence A038589. Then we have

h(n) =
2π√
3
n+O(nθ2)

where we conjecture
θ2 =

1

4
+ ε

7
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is again the best admissible choice. It is indeed easy to show that this problem
fits also the main conjecture 1.1. due to the other formula

h(n) = 1 + 6

&n/3'∑

k=1

(⌊
n

3k + 1

⌋
−
⌊

n

3k + 2

⌋)

(details ommitted) and using the same method than for proving GCP fits the
weak form of the main conjecture in 2.2..

2.3.2 On sums involving the floor function

We support somewhat the strongest form of the main conjecture providing the
following examples.

First example We consider the sum

S(n) :=
∑

k≥1

⌊ n

k2

⌋

which is in fact the sequence A013936 and there is this asymptotic formula

S(n) = ζ(2)n+ ζ

(
1

2

)
n1/2 +O

(
nθ3

)
(5)

where we claim we can take again θ3 = 1
4 + ε. Indeed it is easy to see this sum

can be rewritten as follows

S(n) =
∑

k≥1

⌊√
n

k

⌋

So that we have to consider from our view point of DDP and GCP

U(n) =
n∑

k=1

{√
n

k

}
= n1/2

n∑

k=1

k−1/2 − S(n)

Next we have (details omitted)

n1/2
n∑

k=1

k−1/2 = 2n+ ζ

(
1

2

)
n1/2 +

1

2
+ o(1)

Hence we get using (5)

U(n) = (2− ζ(2))n+O
(
nθ3

)
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And in an other hand it is easy to see

I =

ˆ 1

0

{√
1

t

}
dt = 2− ζ(2)

Therefore the variable change t = u2 yields

I =

ˆ 1

0

{
1

u

}
(2u)du = 2− ζ(2)

Thus the strongest form of the conjecture 2.1. is working and tells us that
choosing

• f(x) = x, g(x) = 2x, λ = 1, µ = 0, ν = 1

we have

Sf,g(N,λ, µ, ν) = U(n) = (2− ζ(2))n+O(n1/4+ε)

And then θ3 = 1
4 + ε is the sharpest value for this problem too.

Second example Namely we consider

S(n) :=
∑

k≥1

⌊
n2

k2

⌋

which is sequence A153818. Then we claim we have

S(n) = ζ(2)n2 + ζ

(
1

2

)
n+O

(
n1/4+ε

)
(6)

Indeed we have

I =

ˆ 1

0

{
1

t2

}
dt = −1− ζ

(
1

2

)

then making the variable change t = u1/2 we get

I =

ˆ 1

0

{
1

u

}(
u−1/2

2

)
du = −1− ζ

(
1

2

)

Hence the strongest form of the conjecture 2.1. tells us that choosing

• f(x) = x, g(x) = x−1/2

2 , λ = 1, µ = 0, ν = 1

we have

Sf,g(N,λ, µ, ν) =

(
−1− ζ

(
1

2

))
n+O(n1/4+ε)

yielding (6).
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3 Experimental support
At first glance it is very hard to check directly the main conjecture for 2 reasons:

1. the value of
´ 1
0 f

({
1
t

})
dt is in general difficult to find.

2. The Riemann sums converge slowly and we need to compute the sum for
each n.

and we didn’t try to find general like Voronoï formula for the Riemann sums.

Regarding 1.

In order to check several functions f we succeeded to find an efficient formula
when f(x) = xα . Namely we have for α /∈ {0, 1} ∪ {−k : k ∈ N}

ˆ 1

0

{
1

t

}α

dt =
α

α− 1
−α

2

(
ψ
(α
2

)
− ψ

(
α− 1

2

))
+α

∑

k≥1

(−1)k

k + α
(ζ(k + 1)− 1)

(7)

where ψ is the digamma function (the proof is ommitted here).

This formula is useful from a computational view point since the series con-
verges geometrically fast. Thus it is possible to perform many checks of the main
conjecture using functions f different than f(x) = x and to make comparisons.

Regarding 2.

Althoug it is difficult to support experimentally the main conjecture using Rie-
mann sums we provide some examples in APPENDIX 1 supporting somewhat
the weak form of the main conjecture. To support the main conjecture for sums
involving more terms in the summand we will introduce a conjectural quasi
Monte Carlo method which apparently is working for function of unbounded
variation like the fractional part function.

3.1 Low discrepancy sequences
It is a celebrated result that for any equidistibuted sequence (an)n∈N in the
interval [0, 1] we have for any Riemann integrable function h

Ih =

ˆ 1

0
h(t)dt = lim

n→∞

1

n

n∑

k=1

h(ak)

moreover if the sequence (an)n∈N is a low discrepancy sequence and f is of
bounded variation we have the Koksma–Hlawka inequality in dimension 1

∣∣∣∣∣Ih − 1

n

n∑

k=1

h(ak)

∣∣∣∣∣ ≤ V (f)D"
n (a1, a2, ..., an)
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where V (f) > 0 depends only on f and D"
n (a1, a2, ..., an) denotes the

star discrepancy of the n values {ai}1≤i≤n. For known computable sequences
(an)n∈N

2it can be shown that

D"
n (a1, a2, ..., an) -

log n

n

Hence low discrepancy sequences (an)n∈N provide a useful numerical method
for approaching Ih compared to Riemann sums which require the computation
of n distinct new terms at each stage. This method is the so called quasi Monte
Carlo method (QMCM for short). In fact we think we can extend somewhat the
Koksma–Hlawka inequality to functions of unbounded variation. Let us start
with a simple example of function f which is bounded and continuous in ]0, 1]
but is of unbounded variation. Namely we consider h(x) = sin(log x). It is an
interesting example since the Riemann sum is easily computable due to the fact

N∑

k=1

h

(
k

N

)
= cos (logN)

N∑

k=1

sin (log k)− sin (logN)
N∑

k=1

cos (log k)

and we have Ih = 1
2 . So that we can compare the Riemann sum to the

QMCM using some low discrepancy sequences. We know that ({rn})n∈N is a
low discrepancy sequence when r > 0 is any irrational value. Since this sequence
is very easy to generate we will use in the sequel the sequence

(
an =

{√
2n

})
n∈N

for our experiments. The following graphic compares the behaviour of
∑N

k=1 h
(

k
N

)
−

N
2 and

∑N
k=1 h

({√
2k

})
− N

2 .

Plot of
∑N

k=1 sin log({√2k})−N
2

log(N+1) (black) vs
∑N

k=1 sin log
(

k
N

)
− N

2 (red)

2For instance the van der Corput sequence, Halton sequences, Sobol sequences.

11



It is clear both graphics are bounded, which led us to the following conjec-
ture.

3.2 QMCM for functions of unbounded variation
We state a conjecture for continuous functions then for discontinuous functions
related to a possible QMCM

3.2.1 Conjecture on a QMCM for continuous functions of unbounded
variation

Suppose h is a Riemann integrable function on [0, 1] which is bounded and
continuous on ]0, 1] but which is of unbounded variation on ]0, 1]. Suppose
(an)n∈N is a low discrepancy sequence on [0, 1]. Then we have

N∑

k=1

h (ak) = IhN +O(logN) ⇒
N∑

k=1

h

(
k

N

)
= IhN +O(1)

3.2.2 Conjecture for discontinuous functions of unbounded variation

Suppose h is a Riemann integrable function on [0, 1] which is bounded and
discontinuous on ]0, 1] with countably many points of discontinuity and which is
of unbounded variation on ]0, 1]. Suppose (an)n∈N is a low discrepancy sequence
on [0, 1]. Then we have

N∑

k=1

h (ak) = IhN +O(g(n)) ⇒
N∑

k=1

h

(
k

N

)
= IhN +O(g(n))

3.3 Experiments supporting the main conjecture 1.1.
The conjecture 3.2.2. is perhaps too general hence we make here a weaker
conjecture related to the fractional part function only and involving sequences
({rn})n∈N (r > 0 irrational) as low discrepancy sequences.

3.3.1 Conjecture related to the fractional part

Suppose f is a continuous function of bounded variation on [0, 1]. Let us define
h as h(x) = f

({
1
x

})
. Then we have for any irrational value r > 0

N∑

k=1

h ({rk}) = IhN +O(g(n)) ⇒
N∑

k=1

h

(
k

N

)
= IhN +O(g(n))

However the converse doesn’t hold even using slowly varying function. This
conjecture could help to improve experimentally the upper bound in both DDP
and GCP. But what is interesting to us is the following last conjecture on the
subject.
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3.3.2 The comparison conjecture

The above conjecture led us to suppose that if 2 sums
∑N

k=1 h1 ({rk}) and∑N
k=1 h2 ({rk}) behave similarly for 2 distinct functions h1 and h2 of form

h1(x) = f1
({

1
x

})
and h2(x) = f2

({
1
x

})
so do the Riemann sums

∑N
k=1 h1

(
k
N

)

and
∑N

k=1 h2

(
k
N

)
. More precisely we make this comparison conjecture.

Comparison conjecture

Let h1(x) = f1
({

1
x

})
and h2(x) = f2

({
1
x

})
given 2 continuous functions f1, f2

of bounded variation on [0, 1] and let r > 0 be an irrational value. Suppose
there is a sharpest function u such that we have

•
∑N

k=1 h1 ({rk}) = Ih1N +O(u(n)) and
∑N

k=1 h2 ({rk}) = Ih2N +O(u(n))

Then there is a sharpest function v such that we have

•
∑N

k=1 h1

(
k
N

)
= Ih1N +O(v(n)) and

∑N
k=1 h2

(
k
N

)
= Ih2N +O(v(n))

In other words we can perform computation using the simple low discrepancy
sequence ({rn})n∈N and then deduce the Riemann sums behave similarly. This
way it is now possible to provide experimental support for the main conjecture
1.1. and for larger values of n than in the APPENDIX 1.

So in the APPENDIX 2 we provide various comparisons of

•
∑N

k=1 h1 ({rk}) vs
∑N

k=1 h2 ({rk})

letting

• h1(x) =
{

1
x

}
and h2(x) =

{
1
x

}α thanks to the formula (5).

4 Generalisations

4.1 The Riemann index of a function
The fact the fractional part function has a general intrinsic property is reminis-
cent of our tauberian approach to RH [Clo, Clo2] where we define the index of
functions of good variation and where we conjecture that the function x %→ &x'

x
is a function of good variation of index 1

2 . By analogy we define the Riemann
index of a function f , Riemann integrable on [0, 1], as follows.

Let

If =

ˆ 1

0
f(t)dt

Rf (N) =
N∑

k=1

f

(
k

n

)
− IfN
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Then θf is the Riemann index of the function f if we have:

θ > θf ⇒ lim
N→∞

Rf (N)

Nθ
= 0

θ ≤ θf ⇒ lim
N→∞

Rf (N)

Nθ
.= 0

So that for continuous function f of bounded variation the index is trivially
zero and for the non trivial function f(x) =

{
1
x

}
it would be 1

4 .

Remark As for the main conjecture 1.1. we conjecture the index θf is also
working for all remainders of type

Rf (N,λ, µ) = λ
∑

1≤k≤N/λ

f

(
k

λn+ µ

)
− IfN

where λ ≥ 1 and µ ≥ 0 are real values, i.e.

θ > θf ⇒ lim
N→∞

Rf (N,λ, µ)

Nθ
= 0

θ ≤ θf ⇒ lim
N→∞

Rf (N,λ, µ)

Nθ
.= 0

4.2 Higher order
We could extend the previous ideas to dm the divisors functions of order m ≥ 1
given by the Dirichlet series

ζ(s)m =
∑

n≥1

dm(n)

ns

To do that we would have to consider the (m− 1)-dimensional integral.

Im−1 =

ˆ

[0,1]m−1

{
1

x1x2...xm−1

}
dx1dx2...dxm−1

and corresponding (m−1)-dimensionnal Riemann sums. Our belief is that there
is no change and the Riemann index is the same whatever the dimension you
consider. Hence we could extend the main conjecture in 1.1. as follows.

Suppose rm−1(N) is the number of terms in any corresponding (m − 1)-
dimensional Riemann sum for Im−1, say Sm−1(N), then we would have

Sm−1(N) = Im−1rm−1(N) +O
(
rm−1(N)

1
4+ε

)

Yielding
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n∑

k=1

dm(k) = nPm−1 (log n) +O
(
n

1
4+ε

)

where Pm−1 is a polynomial of degree m−1 with real coefficients. For d = 3
we then would have

n∑

k=1

d3(k) = n

(
log(n)2 + (3γ − 1) logn+ (3γ2 − 3γ − 3

2
γ1 + 1)

)
+O

(
n

1
4+ε

)

where γ1 is the first Stieltjes constant. In fact we conjecture the more precise
estimate

n∑

k=1

dm(k) = nPm−1 (log n) +O
(
n

1
4 log(n)m−1

)

Like for QMCM in high dimension the factor log(n)m−1 is a constraint for
numerical investigations in order to check the validity of this conjecture.
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APPENDIX 1
In order to check the weak form of the conjecture 1.1. we consider the

remainder

∆(N,λ, µ) := λ
∑

1≤k≤N
λ

{
N

λk + µ

}
− (1− γ)N

and we define

M(N,λ, µ) = max {|∆(k, λ, µ)| : 1 ≤ k ≤ N}

Next we compare M(N,λ, µ) to M(N, 1, 0) for various (λ, µ) by plotting the
ratio M(N,λ,µ)

M(N,1,0) . We claim these ratio are always bounded supporting somewhat
the weak of the conjecture 1.1. and assuming M(N, 1, 0) = O(N1/4+ε).

M(N,λ,µ)
M(N,1,0) for (λ, µ) = (5, 1) , (5, 2) , (5, 3) , (5, 4) and for N ≤ 40000
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M(N,λ,µ)
M(N,1,0) for (λ, µ) = (7, 1) , (7, 2) , (7, 3) , (7, 4) and for N ≤ 50000

M(N,λ,µ)
M(N,1,0) for (λ, µ) = (10, 1) , (10, 3) , (10, 5) , (10, 7) and for N ≤ 180000

Although it seems clear these graphics are bounded we must be cautious
since we computed few terms.
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APPENDIX 2
Here we will use the conjectural trick in 3.3.2 to compare Rieman sums for

• I1 =
´ 1
0

{
1
t

}
dt

and for

• Iα =
´ 1
0

{
1
t

}α
dt

using the formula (5) in section 3. So let us define

∆(N,α) =
N∑

k=1

{
1{

k
√
2
}
}α

− IαN

and

M(N,α) = max {|∆(k, α)| : 1 ≤ k ≤ N}

We plot M(N,α)
M(N,1) for various values of α and confirm somewhat that ∆(N,α)

behaves like ∆(N, 1). Consequently using the conjecture 3.3.2 we support the
stronger form of the main conjecture 1.1. But before this let us see how for

distinct values of α the sums
∑N

k=1

{
1

{k√2}

}α

behave similarly.

N−1/4
∑N

k=1

{
1

{k√2}

}α

for α = 1
2 (black), α = 3

2 (orange),α = 1
3 (blue).
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M(N,α)
M(N,1) for α = 2

3 (black) and α = 4
3 (blue)

M(N,α)
M(N,1) for α = 2, 3, 1

2 ,
3
2 ,

1
3 ,

4
3 .

We think above graphics are bounded or bounded by a slowly varying func-
tion.
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