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1. Introduction

In SPS 37-62, Vol. III, pp. 75-79, a simple sequence
permuter for disguising speech was described. It was
pointed out that a single stage of this simple coder-
decoder spread the samples only over three adjacent posi-
tions; in order to increase the range of permutation, a
concatenation of many stages of the simple coder was
considered. In this article, the behavior of this system
is analyzed and experimental results showing performance
of the permutation algorithm are given.

A new network structure (namely, a ternary tree) for
connecting these simple coders is then analyzed, and ex-
perimental results are also given for that case. As pre-
dicted, the performance of the tree structure is far superior
to that of the concatenation.

2. Performance of the Simple Coders

From SPS 37-62, Vol. 111, a simple coder is defined as
an n = 2 sequence-permutation coder (for which it was
shown that the decoder is essentially the same as the
encoder). Recall that this device generates a “key” se-
quence {k;} where k; € {1,2}. This key sequence directs
a sequence of speech samples {X;} into one of two cells
of a register P = (P,, P,). Whenever k; =j, then X; is
placed in P; (j = 1,2), and the previous occupant of that
cell is “bumped out,” creating a permuted sequence {Y;}.
Also recall that the key sequence has the property that
in every string of three key symbols, both 1 and 2 must
each appear at least once. This last is accomplished by
using a four-stage shift-register S =(S,,S,,S.,S,) that
contains two 1’s and two 2's, which are circulated in one
of two cyclic fashions depending upon a pseudorandom
sequence {¢;} (¢; € {0,1}). If ¢; =0, then the sequence
in S is shifted one position to the right and the contents
of S, is replaced by the contents of S, (denoted S, — S,);
if ¢; = 1, then the three rightmost stages are shifted one
position to the right and S, - S,, S, > S,. The key symbol
k; is taken as the contents of S, at the ith shift. This gives
rise to the state diagram given in Fig. 1 where the directed
branches are labelled with two symbols, the first being
c; and the second being the k; generated in passing out
of the indicated state. Within each state, the contents of
S =1(S,,S,5S,,5,) and a state number are given. Note
that the k; generated from a state is independent of c;.

Let us now analyze the behavior of the simple coder.
We assume that adjacent symbols in {¢;} are independent
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Fig. 1. State diagram for the simple coder

and that ¢; = 0 with probability %. From this, we may
construct the following probability transition matrix
H = (hj) for this six-state Markov process where hj, = P
[next state is k| present state is j] as follows:

(001000'
% 0 0 0 % 0
0% 0 0 0 %

H= (1
% 0 0 0 % 0
0 % 0 0 0 %
(000 0 1 0 0]

Note that this is a doubly stochastic matrix (rows as well
as columns each sum to unity). Let ©= (7, - * + ,m) be
the probability vector of stationary state probabilities
where

™ = lim P [process is in mth state on nth step] (2)

n—o

As is well known, we solve for m from the eigenvector
equation

n = nH (3)

Also, since H is doubly stochastic, the solution is im-
mediately that

1
T = E 1 é m é 6 (4)
(where, of course,
E Tm — 1

has been used). Note that states 1, 4, and 5 give k; = 1
whereas states 2, 3, and 6 give k; = 2.
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Also, W, = AR,, where A depends on the rate of the code, —
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Thus, given p,, ¢, and 8 we can find Py from Eq. (22). 100
Conversely, given p;, 4, and Pz we can find the maximum B _ :’
data rate that yields error probability = P,. ¢
4
For large p, we have the asymptotic result ,
8 2 cos® f 10-!
o fct (P2 (25) —
PL prL—>® [er C ( E)] b
Nl
which is identical to the asymptotic value of the Interplex
system without carrier suppression (Section B). In general, 2= .
the suppressed carrier method yields higher rates. The 162 l C | L | L
advantage is more significant for comparable rates in the @ . 6 10 2 . 6 12 2 . 6 10°
two-channel system. Results for the extreme case of P
a=0(0 =0) and a« = 1(f = =/4) are given in Fig. 3,
together with the results for optimum non-suppressed Fig. 3. Rate/bandwidth vs loop SNR for
carrier system. two-channel Interplex system
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We are interested in calculating two probability distri-
butions. The first is for the random variable U; where

Ui=j—i ()

if Y; = X,. That is, U; is equal to the relative shift of X;
from its original position (i) in the unpermuted sequence
to its new position (j) in the permuted sequence. In
SPS 37-62, Vol. 111, it was shown that X; will be “bumped
out” of the P register at step i +d; —2 if k; is next
repeated d; steps later, where d; € {1,2,3)}. Thus,

Ui=d14~2

and so U; € {—1,0, 1}. The second distribution of inter-
est is for the random variable V; where

Vizn—m (6)

if Y; = X,, and Y,,, = X,.. That is, V; is the difference in
positions in the original (unpermuted) sequence of the ith
and (i + 1)th samples which appear in the permuted
sequence. For example, if {X;} permutes into {Y;} as
shown in Table 1, then {U;} and {V;} are as given in that
table.

Table 1. Example of sequences {U;} and {V;}

i X Yi Ui Vi
1 X1 Xz 1 —1
2 Xz Xy —1 3
3 X3 Xy 1 —1
4 Xy X3 —1 2
5 X5 X5 0 1
6 Xs Xs 0 1
7 Xz Xe 0

Table 2. Deterministic portion of {k;}
given state at step i

1 1 2 2 !
2 2 ! 2

3 2 2

4 1 1

5 1 2 !

6 2 ! ! ?

In order to calculate the distributions for U; and V;,
we only need the distribution of the next four key sym-
bols from a given state. We already know the length-4
sequence (which is deterministic) following states 1 and 6.
From state 2, we go to states 1 or 5 (each with probabil-
ity 1) which, from Table 2, must then give the length-4
sequences (following state 2) as 2122 and 2121, respec-
tively. By duality, state 5 must give 1211 and 1212 (each
with probability %). From state 3, we go to states 2 or 6,
which give 2212 and 2211, respectively (each with proba-
bility %). Thus, the probability of length-4 sequences from
each state is known (Table 3).

Table 3. Length-4 sequences of key symbols
from various states

We now compute P[U; =k] and P[V; =k]. From
the state diagram in Fig. 1, we immediately see that begin-
ning in each state, there is a short deterministic sequence
of key symbols that are generated independently of {c;}.
These are listed in Table 2 where it is assumed that we
are in state m just prior to step i and generate the key
symbol k; upon leaving that state. Note the duality be-
tween states 1 and 6, 2 and 5, and 3 and 4.
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Initial state sequ::scse”:l:fI::)?'s‘;-:\bols ps:::ll:ill?rnyulof
sequence

1 12 21 1

2 2 1 2 2 VA
2 2 1 21 V2
3 2 2 1 2 s
3 2 2 1 1 Va
4 11 2 2 Va
4 11 2 1 Ya
5 1 2 1 2 2
5 1 2 1 1 2
<] 2 1 1 2 1

Now to find P[U; =k], k= —1,0,1, recall that
U, =d; — 2. From this last and from Table 3 we have

PU, = —1] = P[d; =1]
= P[ki:kiu]

—7Tg+7’|'4

1

3 (7)
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= P [k, — ki,+2 -‘—{: kin]

=m + 7w

1
3 (9)
Thus, from Eqs. (7), (8), and (9), we have

5 k=-101 (10)

Now we calculate P[V; = k]. We are interested in
observing two adjacent symbols in the {Y;} sequence.
These may be studied by inspecting Table 3 and observ-
ing the samples generated as a result of the third and
fourth key symbols in each sequence shown. Recall that
if the key sequence is k;_,,1,1,2 (or k4, 2,2,1) then k;_,
must be 2 (or 1) since each key symbol must occur at
least once in each string of three. Thus, from state 1, the
key sequence k; =1, ki, =2, kio, =2, ki.s = 1 would
produce Y; =X,,, Y;,, = X; giving V; = —1 from Eq. (6).
Similar calculations are possible for the other states, and
are summarized in Table 4 in a fashion similar to Table 3.

Since =, =1/6 for m = 1,2, - - - |6, we may then cal-
culate P [V; = k] from

PIV,=kl= 3 P[V,=k|m]mm (11)

where P [V; = k|m] is given as the last column in Table 4
for all non-zero terms. Thus,

1
g k=—-1
1
) k=1
PlVi=k]=( 1 k=9 (12)
3
1
5 k=3
0 otherwise

Equations (10) and (12) give the distributions for U,
and V;, respectively. Of more importance is the fact that
U; is uniformly distributed over {—1,0,1}. Figure 2
shows the experimentally obtained histograms for U;
(Fig. 2a) and V; (Fig. 2b) where a sequence of 7500 sam-
ples X; was used. This figure corresponds to our calcu-
lations in Egs. (10) and (12).

3. The Concatenation of Simple Coders

In order to increase the span of samples over which we
permute, it was suggested in SPS 37-62, Vol. 111 that we
form a concatenation of M simple coders as shown in

Table 4. Calculation of V;

Initial state ki ki k. Kiea Y Yin Vi i‘::::;?l?:;l
1 1 2 2 1 Xin X, —1 1
2 2 1 2 2 X Xisa 2 s
2 2 1 2 1 X Xt 1 Ya
3 2 2 1 2 Xios Xiv 2 Ya
3 2 2 1 1 Xiot Xouz 3 Ya
4 1 1 2 2 Xy X2 3 a
4 1 1 2 1 Xt X1 2 Y2
5 1 2 1 2 X Xin 1 Ya
5 1 2 1 1 X; Xiaa 2 Va
6 2 1 1 2 Xiat . X; —1 1
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Fig. 2. Histograms for U; and V;
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Fig. 3. M-level encoder concatenation

Fig. 3. In this configuration, the mth stage uses the pseudo-
random sequence {C{™} to generate the mth key se-
quence {k{™}. The decoder is again a chain of encoders
in the reverse order such that the mth decoder key se-
quence, {K{m} = {(k{#-m1} (SPS 37-62, Vol. I1I).

We may analyze the mixing behavior of this chain of
M simple coders as follows: From Eq. (10) we know that
U, =—1,0,1, each with probability %. If we take the
permuted output from stage 1 of Fig. 3 and feed it into
a second independent stage as shown, the output sequence
{Y®} from the second stage will be a permutation of
the first permuted sequence. Define U as

U® =j—i (13)

if Y{» =X;, and so U is the relative shift of X; from
its original position, i, in the unpermuted sequence to its

P[U,(m) :k] = P[U1 :kl] B

since the U{™ is the sum of m independent random shifts.
The author knows no simple form for expressing the prob-
ability in Eq. (17). One may define the generating func-
tion for P [U = k] as

G (Z) = k§ PlU™ = k] Z¢ (18)

We may then use the usual properties of generating func-
tions for sums of independent random variables to get

Gn(Z) =[G (Z)]™ (19)
From Egs. (10) and (18), we then obtain

Z+1+7

G, (Z) = 3

(20)
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new position, j, in the twice permuted sequence. Simi-
larly, we define

Um =j—i (14)

it Y{™ = X; where {Y{™} is the m-times permuted out-
put sequence from the mth stage.

Since all the permutations are independent of each
other (i.e., {C{™} are independent pseudorandom se-
quences), then the random variable U(® is merely the
sum of two independent random shifts giving

P[U® =k] = 2 P, [U; =j] P, [Ui,; =k —j] (15)

Jj=-1

where P, [U; =] is the probability distribution for the
relative shift of position to the ith input sample in the
ath stage (¢ = 1,2, - - -, M). Clearly, the summation in
Eq. (15) is the convolution of the distribution P [U; = k],
which is itself evaluated at the kth position. Let us denote
convolution by =, giving

P[U® =k] =P[U; =k]P[U, =k,] (16)

Clearly, also

mtimes

PIU=k]s - xP[U, = k,] (17)

and, thus, from Eq. (19),

1+ Z+ Z2\"
Ly gy

o~ (L

From Eq. (18), the value for P[U{™ = k] may be ob-
tained as the coefficient of Z¥(k =0, +1, - - - , +m) in
Eq. (21). We may also write

o=@ SR () e
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Inversion of Eq. (22) has not been carried out. However,
we may compute P [U™ = k] from the following Pascal-
like triangle:

1 1
1 2 2 1
1 3 6 6 3 1
1 4 10 16 16 10 4 1
1 5 15 30 45 45 30 15 5 1

1 6 21 50 90 126 126 90 50 21 6 1

This triangle is created by haking an element equal to
the sum of its three immediate neighbors in the row above
it. Thus, to find P [U{™ = k], we first locate the kth ele-
ment (from the center vertical column) in the mth row;
the top element of the triangle corresponds to n = k = 0.
We then take this element and divide by 3™. For example,

(%18
(%13

PU® = —4] = — = -~

Obviously, however, the distribution P[U{ = k] is
tending to the gaussian distribution in the limit as m — oo.
Therefore, the cumulative distribution can easily be ap-
proximated. In any case, however, we have not achieved
the performance we were seeking; namely, a uniform
permutation over a large number of shifts. We have ob-
tained a near-gaussian shape that does not spread fast
enough as M increases (it spreads like Y M instead of
like M). Empirical results from simulation are given in
Fig. 4, where we show the histograms for U{™ for
m=2,3, 5 10, and 30 (m =1 is given in Fig. 2). Also
shown are the histograms for V{™ where

Vim =n—p (23)

if Y™ =X, and Y{™ = X,, with the same interpretation
as for V; in Eq. (6). (The computation of P [ V(™ = k] is
very difficult and is not discussed further.) Note the rapid
convergence to gaussian for both distributions.

4. An Improved Configuration—the Ternary Tree

The concatenation of M simple coders leads to a permu-
tation that is not distributed uniformly over the range
[—M, M], as was seen in Subsection 3.

We now consider the ternary tree configuration shown
in Fig. 5. This figure shows the case M = 13 where each
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square box corresponds to a simple coder whose proper-
ties are discussed in Subsection 2. The interpretations of
the connections is as follows: Consider Coder 10; the three
inputs to this coder come from the outputs of coders 1, 2,
and 3. The connection notation means that coder 10 re-
ceives an input from coder 1, followed by an input from
coder 2, followed by an input from coder 3 (this sequence
is repeated indefinitely). The input sequence

(X0, X, X5, - - - ,}
is separated into nine sequences:

{Xl’XIO’XIQ’ T 7}){X23X117X20) T )})

T >{X9,X18,X27; T ,}

In general, we have A tiers of coders where the ath tier
contains 3% simple coders (a =1,2, - - - ,A). In this
case, we have

31
T2

M (24)

The input stream is separated into 34 sequences. Fig-
ure 5 shows the case A =3, M = 13.

As for decoding, we merely create a matching decoding
ternary tree in the reverse configuration. As an example,
consider the two-tier (A = 2) case shown in Fig. 6. Here,
the input sequence {X;} is passed through a splitting
box o that creates 3 streams (3>7*) as shown. The coder
creates the permuted output sequence {Y;}. The decoder
accepts the sequence {Y;} as input after transmission over
some channel and passes it through the reverse tree de-
coder. This produces three output streams that are then
passed through the merging box n to recreate the original
sequence {X;}. The pseudorandom sequence {C{™} for
coder box m is also used for decoder box m’.

We now consider the shift U defined for the A-tier
system as

U =j—i (25)

if Y; =X, where the overall output sequence is {Y:}.
We will show that
-, =M }

(26)

34 k=0,=x1, -
PU® =k]=

0 otherwise
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Fig. 4. Histograms for U™ and V(™ form = 2, 3, 5, 10, and 30 (for the concatenated structure)
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Fig. 5. The ternary tree structure

That is, U is uniformly distributed over 34 = 2M + 1
positions. From Eq. (10), we know for A = 1 that

PUM =k] =3 k= —-1,0,1 (27)

Now consider A = 2. For this case, we separate the input
sequence into three subsequences as shown in Fig. 6.
Consider X;. In passing through coder 2, we have (from
Eq. 27) that X, will appear in place of X;, X5, or X,,, each
with probability %. Then, when each of the singly per-
muted subsequences leave the first tier, the elements are
interlaced as an input to coder 4. In that case, we have
the following: if X; had moved to position 5 in passing
through coder 2, then (in passing through coder 4) it will
move to original positions 4, 5, or 6 (each with proba-
bility ). If X had remained in position 8, it will move
to positions 7, 8, or 9. If X; had moved to position 11, it will

CODER

now move to positions 10, 11, or 12. Since each of these
nine possibilities is equally likely, we have proved Eq. (26)
for A =2. Thus, for A =3 in Fig. 5, X,, will move to
positions 4, 5, 6, 13, 14, 15, 22, 23, or 24 (each with proba-
bility ') in passing through the first two tiers as just
proven. Now, in a similar fashion, each of those nine pos-
sible positions moves is equally likely to three others in
passing through the third tier. Thus X,, moves to posi-
tions 1,2,3, - - - ,26, or 27 (each with probability %7) for
A = 3. By induction, proof of Eq. (26) follows.

Define V{ for A tiers as

Vi =n—p (28)
if Y, = X,and Y;.; = X,. The computationof P [ V(¥ = k]
is also difficult in this case and is not carried out.

Figure 7 gives empirical results for the ternary tree.
Histograms are shown for U and V{® for A =2,3,4.
Note the essentially uniform distribution for U{*’, as we
had been seeking! The distribution for V{4 remains
gaussian-like with every third entry of larger value.

5. Conclusions

We have analyzed and experimented with the M-stage
concatenation of simple coders for use in speech scram-
bling. As predicted, the performance is far below that
which we require for effective scrambling.

We proposed a new topology, the ternary tree, for more
effective scrambling and found that this structure pro-
duced the sought-after uniform distribution over 2M + 1
positions (for M simple coders). The simple coders are
such that the decoders are identical to the encoders. Thus,
we propose to use this method for permuting sequences
of speech samples.

DECODER

Fig. 6. Coder—decoder for A = 2
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Fig. 7. Histograms for U{*) and V{* for A = 2, 3, and 4 (for the ternary tree)
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Fig. 7 (contd)
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