Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
A029953
Palindromic in base 6.
28
0, 1, 2, 3, 4, 5, 7, 14, 21, 28, 35, 37, 43, 49, 55, 61, 67, 74, 80, 86, 92, 98, 104, 111, 117, 123, 129, 135, 141, 148, 154, 160, 166, 172, 178, 185, 191, 197, 203, 209, 215, 217, 259, 301, 343, 385, 427, 434, 476, 518, 560, 602, 644, 651, 693, 735, 777, 819
OFFSET
1,3
COMMENTS
Cilleruelo, Luca, & Baxter prove that this sequence is an additive basis of order (exactly) 3. - Charles R Greathouse IV, May 03 2020
LINKS
Javier Cilleruelo, Florian Luca and Lewis Baxter, Every positive integer is a sum of three palindromes, Mathematics of Computation, Vol. 87, No. 314 (2018), pp. 3023-3055, arXiv preprint, arXiv:1602.06208 [math.NT], 2017.
Phakhinkon Phunphayap and Prapanpong Pongsriiam, Estimates for the Reciprocal Sum of b-adic Palindromes, 2019.
FORMULA
Sum_{n>=2} 1/a(n) = 3.03303318... (Phunphayap and Pongsriiam, 2019). - Amiram Eldar, Oct 17 2020
MATHEMATICA
f[n_, b_] := Module[{i=IntegerDigits[n, b]}, i==Reverse[i]]; lst={}; Do[If[f[n, 6], AppendTo[lst, n]], {n, 1000}]; lst (* Vladimir Joseph Stephan Orlovsky, Jul 08 2009 *)
PROG
(Magma) [n: n in [0..900] | Intseq(n, 6) eq Reverse(Intseq(n, 6))]; // Vincenzo Librandi, Sep 09 2015
(PARI) ispal(n, b=6)=my(d=digits(n, b)); d==Vecrev(d) \\ Charles R Greathouse IV, May 03 2020
(Python)
from gmpy2 import digits
from sympy import integer_log
def A029953(n):
if n == 1: return 0
y = 6*(x:=6**integer_log(n>>1, 6)[0])
return int((c:=n-x)*x+int(digits(c, 6)[-2::-1]or'0', 6) if n<x+y else (c:=n-y)*y+int(digits(c, 6)[-1::-1]or'0', 6)) # Chai Wah Wu, Jun 14 2024
CROSSREFS
Palindromes in bases 2 through 10: A006995, A014190, A014192, A029952, A029953, A029954, A029803, A029955, A002113.
Sequence in context: A043709 A296700 A297259 * A048317 A037398 A048331
KEYWORD
nonn,base,easy
STATUS
approved