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We claim thatwithn > m > 0
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Start by observing that the second binomial coefficient enforces the upper range so that with the usual integrals

we get
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For the sum to converge we require |2(1 + 2)%| < |w/(1 + w)?|. Withe < 1/2 we have
|2(1 + 2)?| < 9¢/4 and withy < 1/2 we have |w/(1 + w)?| > 87/27 thus we require
€ < 327/243. We may take y = 1/3Q ande = 32/3QJr5 with () large. Continuing,
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Now put 2 = v/(1 + w) sothat dz = dv/(1 + w) to get
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Here |u| = p(w) is the image of scaling |2| = € by 1 + w which is a circle of radius |1 + w| and is
therefore contained in an annulus with inner radius E(l - ’y) and outer radius E(l + ’y). Factorizing,
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We see that with y < 1 the circle |v| = p(w) approximates the contour [v| = €. The poles in v other than
v = 0 are outside this contour, with the first one requiring that |v[ = -y whereas |v| approximates € and the
other two becoming arbitrarily close to —1 as Q grows large. Therefore we are justified deforming the contour
for v to the circle ]'U| = ¢ independent of w since we do not pick up or lose any poles. Switching integrals with
Fubini yields
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With the inner integral in w we clearly have the pole at w = —v inside the contour by construction of € and 7.
On the other hand the pole at w = — (1 —+ 'U)z/v goes to infinity as () is large and is therefore outside the
contour. Therefore the inner integral is the residue at w = —®v which yields for the remaining outer integral
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This is
(~1)" (1) (m) (et =2n Y <m)z—q,
q=0 q q=0
Recall that we said 7 > m which yields at last

1 m
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We have the claim and may conclude. We may use the sum that appeared last as a natural way to extend a
closed form to the case when m > n.

This identity was found by a computer search which pointed to [OEIS A036561](https://oeis.org/A036561),
Nicomachus triangle.
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