Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
A046968
Numerators of coefficients in Stirling's expansion for log(Gamma(z)).
12
1, -1, 1, -1, 1, -691, 1, -3617, 43867, -174611, 77683, -236364091, 657931, -3392780147, 1723168255201, -7709321041217, 151628697551, -26315271553053477373, 154210205991661, -261082718496449122051, 1520097643918070802691
OFFSET
1,6
COMMENTS
A001067(n) = a(n) if n<574; A001067(574) = 37*a(574). - Michael Somos, Feb 01 2004
REFERENCES
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, Tenth Printing, 1972, p. 257, Eq. 6.1.41.
L. V. Ahlfors, Complex Analysis, McGraw-Hill, 1979, p. 205
LINKS
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, Tenth Printing, 1972, p. 257, Eq. 6.1.41.
Eric Weisstein's World of Mathematics, Stirling's Series
FORMULA
From numerator of Jk(z) = (-1)^(k-1)*Bk/(((2k)*(2k-1))*z^(2k-1)), so Gamma(z) = sqrt(2*Pi)*z^(z-0.5)*exp(-z)*exp(J(z)).
MAPLE
seq(numer(bernoulli(2*n)/(2*n*(2*n-1))), n = 1..25); # G. C. Greubel, Sep 19 2019
MATHEMATICA
Table[ Numerator[ BernoulliB[2n]/(2n(2n - 1))], {n, 1, 22}] (* Robert G. Wilson v, Feb 03 2004 *)
s = LogGamma[z] + z - (z - 1/2) Log[z] - Log[2 Pi]/2 + O[z, Infinity]^42; DeleteCases[CoefficientList[s, 1/z], 0] // Numerator (* Jean-François Alcover, Jun 13 2017 *)
PROG
(PARI) a(n)=if(n<1, 0, numerator(bernfrac(2*n)/(2*n)/(2*n-1)))
(Magma) [Numerator(Bernoulli(2*n)/(2*n*(2*n-1))): n in [1..25]]; // G. C. Greubel, Sep 19 2019
(Sage) [numerator(bernoulli(2*n)/(2*n*(2*n-1))) for n in (1..25)] # G. C. Greubel, Sep 19 2019
(GAP) List([1..25], n-> NumeratorRat(Bernoulli(2*n)/(2*n*(2*n-1))) ); # G. C. Greubel, Sep 19 2019
CROSSREFS
Denominators given by A046969.
Similar to but different from A001067. See A090495, A090496.
Sequence in context: A141588 A281331 A281332 * A255505 A001067 A141590
KEYWORD
frac,sign,nice
AUTHOR
Douglas Stoll (dougstoll(AT)email.msn.com)
EXTENSIONS
More terms from Frank Ellermann, Jun 13 2001
STATUS
approved