Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
A047257
Numbers that are congruent to {4, 5} mod 6.
10
4, 5, 10, 11, 16, 17, 22, 23, 28, 29, 34, 35, 40, 41, 46, 47, 52, 53, 58, 59, 64, 65, 70, 71, 76, 77, 82, 83, 88, 89, 94, 95, 100, 101, 106, 107, 112, 113, 118, 119, 124, 125, 130, 131, 136, 137, 142, 143, 148, 149
OFFSET
1,1
COMMENTS
Equivalently, numbers m such that 2^m - m is divisible by 3. Indeed, for every prime p, there are infinitely many numbers m such that 2^m - m (A000325) is divisible by p, here are numbers m corresponding to p = 3. - Bernard Schott, Dec 10 2021
Numbers k for which A276076(k) and A276086(k) are multiples of nine. For a simple proof, consider the penultimate digit in the factorial and primorial base expansions of n, A007623 and A049345. - Antti Karttunen, Feb 08 2024
REFERENCES
Michael Doob, The Canadian Mathematical Olympiad & L'Olympiade Mathématique du Canada 1969-1993, Canadian Mathematical Society & Société Mathématique du Canada, Problem 4, 1983, page 158, 1993.
LINKS
The IMO Compendium, Problem 4, 15th Canadian Mathematical Olympiad 1983.
FORMULA
a(n) = 4 + 6*floor(n/2) + n mod 2.
a(n) = 6*n-a(n-1)-3, with a(1)=4. - Vincenzo Librandi, Aug 05 2010
G.f.: ( x*(4+x+x^2) ) / ( (1+x)*(x-1)^2 ). - R. J. Mathar, Oct 08 2011
a(n) = 3*n - (-1)^n. - Wesley Ivan Hurt, Mar 20 2015
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi/(6*sqrt(3)) - log(2)/3. - Amiram Eldar, Dec 14 2021
E.g.f.: 1 + 3*x*exp(x) - exp(-x). - David Lovler, Aug 25 2022
MATHEMATICA
Select[Range@ 150, 4 <= Mod[#, 6] <= 5 &] (* Michael De Vlieger, Mar 20 2015 *)
LinearRecurrence[{1, 1, -1}, {4, 5, 10}, 50] (* Harvey P. Dale, Oct 16 2017 *)
PROG
(Maxima) A047257(n):=4 + 6*floor(n/2) + mod(n, 2)$ akelist(A047257(n), n, 0, 40); /* Martin Ettl, Oct 24 2012 */
(PARI) a(n) = 3*n - (-1)^n \\ David Lovler, Aug 25 2022
CROSSREFS
Cf. A000325.
Similar with: A299174 (p = 2), this sequence (p = 3), A349767 (p = 5).
Sequence in context: A037353 A269003 A246390 * A327311 A151735 A050039
KEYWORD
nonn,easy
STATUS
approved