Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
A048159
Triangle giving a(n,k) = number of (n,k) labeled Greg trees (n >= 2, 0 <= k <= n-2).
9
1, 3, 1, 16, 13, 3, 125, 171, 85, 15, 1296, 2551, 2005, 735, 105, 16807, 43653, 47586, 26950, 7875, 945, 262144, 850809, 1195383, 924238, 412650, 100485, 10395, 4782969, 18689527, 32291463, 31818045, 19235755, 7113645, 1486485, 135135
OFFSET
2,2
COMMENTS
An (n,k) Greg tree can be described as a tree with n black nodes and k white nodes where only the black nodes are labeled and the white nodes are of degree at least 3.
Row sums give A005263.
LINKS
C. Flight, How many stemmata?, Manuscripta, 34 (1990), 122-128.
C. Flight, How many stemmata?, Manuscripta, 34 (1990), 122-128. (Annotated scanned copy)
M. Josuat-Vergès, Derivatives of the tree function, arXiv preprint arXiv:1310.7531 [math.CO], 2013.
Lucas Randazzo, Arboretum for a generalization of Ramanujan polynomials, arXiv:1905.02083 [math.CO], 2019.
FORMULA
a(n, 0) = n^(n-2), a(n, k) = (n+k-3)*a(n-1, k-1) + (2n+2k-3)*a(n-1, k) + (k+1)*a(n-1, k+1).
EXAMPLE
Triangle begins
1;
3, 1;
16, 13, 3;
125, 171, 85, 15;
...
MATHEMATICA
a[n_, 0] := n^(n-2); a[n_ /; n >= 2, k_] /; 0 <= k <= n-2 := a[n, k] = (n+k-3)*a[n-1, k-1] + (2*n+2*k-3)*a[n-1, k] + (k+1)*a[n-1, k+1]; a[n_, k_] = 0; Table[a[n, k], {n, 2, 9}, {k, 0, n-2}] // Flatten (* Jean-François Alcover, Oct 03 2013 *)
CROSSREFS
KEYWORD
nonn,easy,tabl,nice
EXTENSIONS
More terms from Larry Reeves (larryr(AT)acm.org), Apr 07 2000
STATUS
approved