Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
A062992
Row sums of unsigned triangle A062991.
12
1, 3, 13, 67, 381, 2307, 14589, 95235, 636925, 4341763, 30056445, 210731011, 1493303293, 10678370307, 76957679613, 558403682307, 4075996839933, 29909606989827, 220510631755773, 1632599134961667, 12133359132082173
OFFSET
0,2
COMMENTS
a(n) = N(2; n,x=-1), with the polynomials N(2; n,x) defined in A062991.
LINKS
Paul Barry, Characterizations of the Borel triangle and Borel polynomials, arXiv:2001.08799 [math.CO], 2020.
L. Guo and W. Y. Sit, Enumeration and generating functions of Rota-Baxter Words, Math. Comput. Sci. 4 (2010) 313-337.
FORMULA
a(n) = (-1)^(n+1) + 2*Sum_{j = 0..n} (-1)^j*C(n-j)*2^(n-j) with C(n) := A000108(n) (Catalan).
G.f.: A(x) = (2*c(2*x) - 1)/(1 + x) with c(x) the g.f. of A000108.
a(n) = (1/(n+1)) * Sum_{k = 0..n} binomial(2*n+2, n-k)*binomial(n+k, k). - Paul Barry, May 11 2005
Rewritten: a(n) = (1 - 2*c(n, -2))*(-1)^(n+1), n >= , with c(n, x) := Sum_{k = 0..n} C(k)*x^k and C(k) := A000108(k) (Catalan). - Wolfdieter Lang, Oct 31 2005
Recurrence: (n+1)*a(n) = (7*n-5)*a(n-1) + 4*(2*n-1)*a(n-2). - Vaclav Kotesovec, Oct 13 2012
a(n) ~ 2^(3*n+4)/(9*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Oct 13 2012
a(n) = hypergeometric([-n, n+1], [-n-1], 2). - Peter Luschny, Nov 30 2014
G.f.: A(x) = exp( Sum_{n >= 1} A119259(n)*x^n/n ). - Peter Bala, Jun 08 2023
MATHEMATICA
Table[2*Sum[(-1)^j*Binomial[2*n-2*j, n-j]/(n-j+1)*2^(n-j), {j, 0, n}]-(-1)^n, {n, 0, 20}] (* Vaclav Kotesovec, Oct 13 2012 *)
PROG
(PARI) a(n)=polcoeff((1-2*x-sqrt(1-8*x+x^2*O(x^n)))/(2*x+2*x^2), n)
(PARI) a(n)=if(n<0, 0, polcoeff(serreverse((x-x^2)/(1+x)^2+O(x^(n+2))), n+1)) \\ Ralf Stephan
(Haskell)
a062992 = sum . a234950_row -- Reinhard Zumkeller, Jan 12 2014
(Sage)
def a(n): return hypergeometric([-n, n+1], [-n-1], 2)
[a(n).hypergeometric_simplify() for n in range(21)] # Peter Luschny, Nov 30 2014
(Magma)
R<x>:=PowerSeriesRing(Rationals(), 30);
Coefficients(R!( (1-2*x-Sqrt(1-8*x))/(2*x+2*x^2) )); // G. C. Greubel, Sep 27 2024
CROSSREFS
Cf. A112707 (c(n, -m) triangle). Here m=2 is used. Row sums of A234950.
Sequence in context: A366011 A365250 A200754 * A064062 A114191 A107592
KEYWORD
nonn,easy
AUTHOR
Wolfdieter Lang, Jul 12 2001
STATUS
approved