Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A065096
Sums of lists produced by a variant of the iteration that produces the Catalan numbers: start with 0 and at each iteration replace each integer k with the list 0,1,...,k-1,k,k+1,k,k-1,...,1,0 and let a(n) be the sum of the resulting (flattened) list after n iterations.
8
0, 1, 6, 31, 156, 785, 3978, 20335, 104856, 545073, 2854350, 15046383, 79787700, 425360481, 2278586898, 12259138975, 66216193968, 358941938849, 1952111592342, 10648449309823, 58245727453260, 319406931168241, 1755674399021466, 9671384910586511
OFFSET
0,3
COMMENTS
Number of diagonals emanating from a fixed vertex of a convex (n+3)-gon in all of its dissections. Example: a(1)=1 because in the three dissections of a convex quadrilateral ABCD (namely: empty, {AC}, {BD}) there is only one diagonal emanating from A.
FORMULA
G.f.: (1-3*z-sqrt(1-6*z+z^2))^2/(16*z^3).
a(n) = (1/Pi)*Integral_{x=3-2*sqrt(2)..3+2*sqrt(2)} x^n*sqrt(-x^2+6x-1)*(x-3)/8. - Paul Barry, Sep 16 2006
a(0) = 0 and, for n > 0, a(n) = Sum_{k=1..n} A001003(k)*A001003(n+1-k). - Philippe Deléham, Jan 27 2004
D-finite with recurrence (n+3)*a(n) + 3*(-3*n-4)*a(n-1) + (19*n-9)*a(n-2) + 3*(-n+2)*a(n-3) = 0. - R. J. Mathar, Nov 24 2012
Recurrence: (n+3)*a(n) = -9*(n-3)*a(n-4) + 30*(2*n-3)*a(n-3) - 46*n*a(n-2) + 6*(2*n+3)*a(n-1). - Fung Lam, Jan 29 2014
a(n) ~ (3*sqrt(2)-4)^(3/2) * (3+2*sqrt(2))^(n+3) / (4 * sqrt(Pi) * n^(3/2)). - Vaclav Kotesovec, Feb 13 2014
From Peter Bala, Aug 30 2023: (Start)
a(n) = Sum_{k = 0..n-1} 2^(k+1)/(n+1) * binomial(n+1, k)*binomial(n+1, k+2).
(n+3)*(n-1)*a(n) = 3*n*(2*n+1)*a(n-1) - n*(n-1)*a(n-2) with a(0) = 0 and a(1) = 1.
G.f. A(x) satisfies the algebraic equation 4*x^3*A(x)^2 - (5*x^2 - 6*x + 1)*A(x) + x = 0 and the differential equation
(3*x^4 - 19*x^3 + 9*x^2 - x)*dA/dx + (3*x^3 - 29*x^2 + 21*x - 3)*A(x) + 4*x = 0 with A(0) = 0. (End)
MAPLE
a := proc(n) option remember; if n = 0 then 0 elif n = 1 then 1 else (3*n*(2*n+1)*a(n-1) - n*(n-1)*a(n-2))/((n+3)*(n-1)) end if; end:
seq(a(n), n = 0..20); # Peter Bala, Aug 30 2023
MATHEMATICA
Table[Plus@@Flatten[Nest[ #/.a_Integer:> Join[Range[0, a+1], Range[a, 0, -1]]&, {0}, n]], {n, 0, 10}]
Table[Range[n, 0, -1].Table[a[n, k], {k, 0, n}], {n, 0, 36}] (* with a[n, k] as defined in A033877 *)
CROSSREFS
Sequence in context: A003463 A026771 A289788 * A077352 A038223 A334650
KEYWORD
nonn,easy
AUTHOR
Wouter Meeussen, Nov 11 2001
STATUS
approved