Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
A068995
Integer parts of the square roots of the schizophrenic numbers (A014824).
3
1, 3, 11, 35, 111, 351, 1111, 3513, 11111, 35136, 111111, 351364, 1111111, 3513641, 11111111, 35136418, 111111111, 351364184, 1111111111, 3513641844, 11111111111, 35136418446, 111111111111, 351364184463, 1111111111111
OFFSET
1,2
COMMENTS
a(n) appears to result from (alternately) intermeshing two subsequences, one of the form 11, 111, 1111, ..., the other of the form 35, 351, 3513, .... In both subsequences, the current term is an initial segment of the next term. If the first k (k an even number) terms are deleted from a(n), a(n) can be reconstructed from the resulting sequence by deleting appropriate digits from the end of terms. In this sense, a(n) is self-similar.
FORMULA
From Christopher Hohl, Jun 27 2019: (Start)
a(2n-1) = A014824(n) - A014824(n-1), for n>=1;
a(2n-2) = floor(a(2n-1) / sqrt(10)), for n>=2. (End)
EXAMPLE
123 is the third schizophrenic number; its square root has integer part 11.
MATHEMATICA
h[n_ /; n == 0] := 0; h[n_ /; n > 0] := 10*h[n - 1] + n; t = Table[Floor[Sqrt[h[i]]], {i, 1, 40}]
CROSSREFS
Cf. A014824.
Sequence in context: A026154 A025181 A004054 * A109196 A032637 A034576
KEYWORD
base,nonn
AUTHOR
Joseph L. Pe, Mar 14 2002
STATUS
approved