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undo the intersection as shown, keeping the other n — 2 segments
unchanged (@ + b > ¢,d + e > f). Consequently, any arrangement
which has minimum total length must necessarily be free of intersec-
tions.

2. Two Problems from the 1974 USSR National Olympiad
(#4 and #9)

#4. Consider a square grid S of 169 points which are uni-
formly arrayed in 13 rows and 13 columns (like the lattice
points (m,n), m,n = 1,2, ..., 13). Prove that no matter
what subset 7', consisting of 53 of these points, might be
selected, some 4 points of 7" will be the vertices of a rec-
tangle R whose sides are parallel to the sides of S.
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We need to show that some pair of points (4, B) of T, in one row of
S, line up in the same pair of columns with a second such pair (C, D)
in another row. Suppose the rows of § are numbered 1, 2, ..., 13 and
that the number of points of T in row i is a;.
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Now a; points in the same row determine (2) pairs of candidates
(A, B), each occurring in one of the (2 ) possible pairs of columns of
§. Of course, there is a very good chance that none of the (2) pairs of
columns determined by the points of 7 in a particular row i will occur
again among the ( ’) such pairs for any other row j. But, if the
total number of pairs of columns determined by the rows of points of
T, namuly( ) + (”2’) + -+ ( ) ) were to exceed (2), the number
of possible pairs of columns of S, the pigeonhole principle* would
imply that some pair of columns would have to be repeated, and thus

produce a desired rectangle R. Therefore, let us try to show that
13
; 13
L (5)>(5)
i=1\ 2 2
which simplifies easily as follows (since T contains 53 points, we have
L a; = 53):
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Ea > 156 + Ea = 156 + 53 = 209.

i=1

By setting each b; = 1 in the famous Cauchy inequality*

(@i +a3+ -+ + a2y} + b3+ - + b2)
= (a1 +ayb, + -+ +a,b,)?

(which, I expect, would be well known to all the olympiad mathletes,
who are thoroughly coached these days), we obtain

13 13 \2
<.§1 a?) -13 = <§1 a,-) ,

* An asterisk indicates a word or idea that is explained in the glossary.
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which gives

532 52
E S — =53-4=212> 20
p2 al = 3 >N 5= > 209,

as desired.

This companion problem approaches the same subject from the
opposite point of view, a nice touch by the composers of this olym-
piad.

#9. Given a square grid S containing 49 points in 7 rows
and 7 columns, a subset 7" consisting of k points is se-
lected. The problem is to find the maximum value of k&
such that no 4 points of 7" determine a rectangle R having
sides parallel to the sides of S.

Using the notation established in the previous problem, we see im-

mediately that unless
7
; 7
5 (3)=0)
i=1 2 2

an undesired rectangle R will surely result. Since /-, a; = k, this
reduces to

7
?. a’ <42 +k (1
Turning again to the Cauchy inequality, putting each b; = 1 yields

,
(@, +ay+ - +a;) < <_§Ia,2>-7,

and
k2 7
— =< X 4} 2
7 = o @ 2
Combining (1) and (2), we obtain
2 7
k E a? < 42 + k,

=
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which demands that

kZ
— < 42 + k,
7<

k> — 7k — 294 < 0,
(k + 14)(k — 21) = 0,
placing k in the range —14 < k < 21.

y =Kk — Tk — 29

(—14,0) 0 (21,0)

Is it possible for k to be as large as 21? If k = 21, all of the inequal-
ities, including the Cauchy inequality, become equalities. Now there
is equality in Cauchy’s relation only if the a; and b; are, respectively,
proportional. Since all b; = 1, equality here is out of the question
unless the a;’s are all equal. Thus, if k can actually be as great as 21,
T will have to contain exactly 3 points from each row. In checking the
feasibility of such an arrangement by direct trial, one soon succeeds
as shown. Thus the maximum k is indeed 21.
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3. Stanley’s Theorem

Every now and again one comes across an astounding result that
closely relates two foreign objects which seem to have nothing in
common. Who would suspect, for example, that, on the average, the
number of ways of expressing a positive integer n as a sum of two
integral squares, xX+ y2 = n, is 7 ([3]). In this section I would like
to tell you about another of these totally unexpected results, a de-
lightful little gem due to Richard Stanley of MIT.

The 11 unordered partitions of the positive integer 6 are listed in
Table 1 below. A second column in the table gives the number of
distinct parts (i.e., repetitions are not counted) that occur in the par-
titions. If we add up the numbers in this second column we obtain a
total of 19. Now count the number of 1’s that occur in the list of
partitions. Hmmm . .. isn’t that interesting? This is no coincidence,
for the same is true for the partitions of every positive integer.

STANLEY'S THEOREM. The total number of 1's that occur among
all unordered partitions of a positive integer is equal to the sum of the
numbers of distinct parts of those partitions.

Let us denote the number of unordered partitions of n by p(r), and
define p(0) to be 1. Since the order of the integers in a partition
doesn’t count, rearranging them to suit ourselves doesn’t cause any
trouble. Consequently, let us write them in nondecreasing order and
enter them in a table (in a normal way—one partition per row, start-
ing each at the left). Each partition will occupy as many columns as it



