Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
A075128
Binomial transform of generalized tetranacci numbers A073817: a(n)=Sum((-1)^k Binomial(n,k)*A073817(k),(k=0,..,n)).
2
4, 3, 5, 3, 5, 8, 23, 52, 109, 201, 350, 586, 983, 1680, 2952, 5288, 9549, 17207, 30803, 54761, 96910, 171223, 302736, 536225, 951487, 1690208, 3003408, 5335509, 9473756, 16814058, 29833868, 52932503, 93922925, 166678207, 295825369
OFFSET
0,1
LINKS
FORMULA
a(n)=3*a(n-1)-2*a(n-2)-2*a(n-3)+3*a(n-4), a(0)=4, a(1)=3, a(2)=5, a(3)=3. G.f.: (4 - 9*z + 4*z^2 + 2*z^3)/(1 - 3*z + 2*z^2 + 2*z^3 - 3*z^4).
MATHEMATICA
CoefficientList[Series[(4-9*z+4*z^2+2*z^3)/(1-3*z+2*z^2+2*z^3-3*z^4), {z, 0, 40}], z]
LinearRecurrence[{3, -2, -2, 3}, {4, 3, 5, 3}, 40] (* Harvey P. Dale, Jul 13 2023 *)
CROSSREFS
Cf. A073817.
Sequence in context: A326768 A328237 A249220 * A074091 A177033 A104569
KEYWORD
easy,nonn
AUTHOR
Mario Catalani (mario.catalani(AT)unito.it), Sep 03 2002
STATUS
approved