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Define the sequence (u(n,x): n > 1) of rational functions of = by
2

u(l,z) =2 and wu(n+1,z) = +1 forn>1.

u(n, )

In this note, we prove various conjectures about the above rational sequence related to the OEIS
sequences A075827, A075828| |A075829, and A075830. These sequences were originally defined by
Benoit Cloitre in 2002. Let
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a(n) = A024167(n) = n'z and B(n) = A024168(n (1)
Theorem 1. For each integer n > 2, we have
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~ [A024167(n — 1) = + A024168(n — 1)’

Proof. Equation follows from equation by multiplying the numerator and denominator of
the fraction in by (n — 1)L

We prove equation by induction on n. For n = 2, we have
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12 +1:x+1 _ 2(1—5):1:4—2(5)
u(l, ) x ()x+0 ’
and the base case for induction has been established.

Next we proceed with the induction step. Assume equation holds for an arbitrary n > 2.

u(2,z) =
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Thus, equation (2)) holds for n + 1 as well, and this completes the inductive step. O
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Lemma 2. For each integer n > 2, we have

ged(a(n), an — 1)) = ged(B(n), B(n — 1)) (4)
= ged(a(n — 1), (n = 1)1 (5)
=ged(B(n = 1), (n — 1)) = ged(a(n — 1), f(n — 1)), (6)

where the sequences o and B are defined in .
Proof. Fix integer n > 2. It is trivial to establish the following identities:
a(n) —na(n —1) = (n— )I(=1)""" = —f(n) + nf(n - 1), (7)
am—1)+pn—-1)=(m—-1)! and «(n)+ B(n)=nl. (8)
Let o* = ged(a(n),a(n — 1)) and g* = ged(B(n), B(n — 1)). Identities imply that a*|(n — 1)!
and *|(n — 1)!. Using these and identities (8], we get the following:
(ala(n—1) & a*|(n—1)!) = a*|f(n—1) and (a*|a(n) & a*|(n—1)!) = a*|B(n).
It follows that o*|5*. In a similar way, we can prove that §*|a*. It follows that o™ = 8*.
Now let a** = ged(a(n — 1), (n — 1)!) and g** = ged(B(n — 1), (n — 1)!). From equations (7)),
we get that o™ |a(n) and **|8(n). But trivially we have a*|a(n — 1) and 5**|5(n — 1). Thus,
o™ ged(a(n),a(n — 1)) =a* and p*|ged(B(n), B(n —1)) = 5.
But from equations (7)), we also get a*|(n — 1)! and B*|(n — 1)!. But we trivially have a*|a(n — 1)
and B*|5(n —1). Hence
a*lged((n =Dl a(n—1)) =a™ and  B*ged((n— 1)}, B(n — 1)) = ™.

Combining all of the above results, we conclude that o* = o** = g** = g*.

Finally, let 7* = ged(a(n — 1), 3(n — 1)). From the first equation in (8)), we get v*|(n — 1)!.
Since also v*|a(n — 1), we conclude that v*| ged(a(n — 1), (n — 1)!) = o**. From the first equation
in (8), we also have a**|3(n — 1). Since a**|a(n — 1), we get o**|ged(B(n — 1), a(n — 1)) = +*.
Thus, v* = o™, and this finishes the proof of the lemma. O

We let y(n) denote the sequence described in equations , , and @ of Lemma [2} that is,

v(n) = A334958(n — 1) = ged(a(n), an — 1)) = ged(B(n), B(n — 1))
=ged(a(n —1),(n— 1)) = ged(B(n — 1), (n — 1)!)
=gcd(a(n —1),8(n—1)) forn > 2.

Define now the sequences v1, v9, v3, v4 as follows:

vi(l)=1 and wvi(n) = S for n > 2;
va(l) =0 and we(n) = fgzs for n > 2;
v3(1)=0 and w3(n) = a(’?;(;)l) for n > 2;
ve(l) =1 and wy(n) = ﬁ(:(;)l) for n > 2.


http://oeis.org/A334958

We shall prove that
v = A075827, wy = AQ75828, w3 = A075830, w4 = A075829.
This follows immediately from the following theorem.

Theorem 3. For all integer n > 1,

vi(n)z + va(n)
vs(m)T + 0a(n)’ )

Also, v1(n) + va(n) = n(vs(n) + va(n)) and ged(vs(n),ve(n)) =1 for n > 1. This means that the
rational function above is in lowest terms.

u(n,z) =

Proof. Equation @ is obvious for n = 1. Assume n > 2. From equations and , we have

a(n) B(n)
w(n, z) = a(n)z + B(n) _ ST + ~(m) _ v1(n)x + va(n)
’ a(n — 1Lz + p(n—1) 0‘(7";)1)35 + ,3%:)1) v3(n)x + vg(n)’

This proves equation @ when n > 2.
For n = 1, we have vi(n) + v2(n) = 14+0=1=1(0+ 1) = n(vz(n) + va(n)). Assume now
n > 2. From equations , we get
a(n)+B(n) _ n! _n(a(n—1)+B(n—1))
v1(n) +v2(n) = = = =n(vz(n) +v4(n)).
1(m) +va(m) = T = s o (5(n) + va())

Since y(n) = ged(a(n — 1), 8(n — 1)), we get

ecd(v3(n), va(n)) = ged <O‘(;L(;)1), Bln - 1)> .

This finishes the proof of the theorem. O
Next we give some properties of the sequence (y(n) : n > 2).
Lemma 4. For integer n > 2, y(n)|y(n+1).
Proof. From the equation a(n) — na(n — 1) = (n — 1)!(=1)""! we get that
v(n) = ged(a(n — 1), (n — 1)Hla(n).
But trivially we have v(n)|n!, so v(n)| ged(a(n),n!) = y(n + 1). O
Lemma 5. For each integer n > 2, if n is prime, then y(n) = vy(n +1).

Proof. Assume n is prime. By Lemma @] v(n)|y(n + 1).

Assume now nla(n). From the equation a(n) — na(n — 1) = (n — 1)!(=1)""! we get that
n|(n — 1)!, a contradiction. Thus, ged(a(n),n) = 1. This together with v(n + 1) = ged(a(n),n!)
imply that v(n + 1)[(n — 1)!. But then y(n + 1)|na(n — 1), which implies y(n + 1)|a(n — 1) (since
is n is prime with no common factor with v(n + 1)). Thus

v+ 1)lged((n — 1} a(n 1)) = y(n).
Hence, y(n) = vy(n + 1). O
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We believe the converse of Lemma [5|is also true, but we have not been able to prove it.
Conjecture 6. For each integer n > 2, if y(n) = v(n + 1), then n is prime.
A consequence of Lemma [5 and Conjecture [6] is the following result.

Corollary 7. If n =1 or n is prime, then vi(n) = v3(n+1), i.e., A075827(n) = A075830(n + 1).
If Congecture [0] is true, then the converse is also true.

Proof. If n =1, then v1(1) = 1 = v3(2). If n is prime, then by Lemma 5| we have y(n) = y(n + 1).
Thus,
a(n) _ an)

v1(n) = = =wv3(n+1).
T RS AR
Assume now Conjecture |§| is true and v1(n) = vs(n + 1). If n > 1, then % = V(O‘n(z)l), and so
v(n) = y(n +1). By Conjecture [6 n is prime. O

Next we prove the claims made by N. J. A. Sloane and Alexander Adamchuk in 2006 about the
sequences vy = A075830 and vy = A075829, respectively.

—1)k+
Theorem 8. Let H*(n) = 1 _; 1)

vs3(n) = numerator(H*(n — 1)) = A058313(n — 1) and
v4(n) = denominator(H*(n — 1)) — numerator(H*(n — 1)) = A058312(n — 1) — A058313(n — 1).

Proof. For n > 2, we have

a(n—1) _ an—1)
() ged(a(n —1), (n = 1)}

v3(n) =

= numerator (n = DH*(n — 1) = numerator(H*(n —
= t ( (=1 > tor( H™( 1)).
Similarly, for n > 2,
oy~ =1 Bn=1)
v(n) ged(B(n — 1), (n — 1))

)
S—E)

= numerator (; ( ]j ) = numerator (1 — H*(n —1)).

But if H*(n—1) = ¢, where a and b are integers with ged(a,b) = 1 and b # 0, then 1 - H*(n—1) =
=% with ged(b — a,b) = 1. Thus, v4(n) = denominator(H*(n — 1)) — numerator(H*(n — 1)). O

In the spirit of Sloane and Adamchuk’s formulas, we now give formulas for sequences v1 and vs.
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Theorem 9. Let H*(n) =3 ;_,; (_1,):+1 be the alternating harmonic number. Then, for n > 2,

v1(n) = numerator (M) and va(n) = numerator (W) ,

where oo s defined as % i lowest terms.

Proof. For integer n > 2, we have

a(n)
o) = ged(a(n), a(n —
= numerator ( a )
a(n —
= numerator < n (n) ) = numerator <nH*(n)> .
—1)!H*(n —1) H*(n—1)
Similarly,
B(n)
02 = 2 ed(Bn), Bl =
= numerator ( B )

Bn—1

)
n'(l H*(n)) — numerator —n(l _ H*(n)>
i =) ~ e (1 )

(For the case n =2, 5(1) = 0 and 3(2) = 1 with ged(8(2),3(1)) = 1. In this case, the numerator

of 8 Elg = = oo is defined to be 1.) This completes the proof of the theorem. O

= numerator <

Define the sequences (A(n) :n > 1) and (B(n) : n > 1) by

2

n
= = >
A(l) =00, A(n+1) A0 +1 forn>1 and
n2
B(1) =0, B(n+1):B(n)+1 forn > 1,

where = = 0 and § = co. (We then have A(2) = 1, B(2) = oo, and B(3) = 1.)

Theorem 10. Forn > 1,

v1(n) = numerator(A(n)), wva(n) = numerator(B(n)),

v3(n) = denominator(A(n)), wv4(n) = denominator(B(n)),
where oo in lowest terms is defined as %.

Proof. Note that, for each n > 1,

A(n) = u(n,00) = lim u(n,z) and B(n)=u(n,0).

T—00



It follows from equation @ in Theorem |3| that, for each n > 1,

va(n) .
va(n)

_vi(n)

A(n) = us(1)

and B(n) =

(10)

For n = 1, we clearly have ged(vy(1),v3(1)) = ged(1,0) = 1 and ged(v2(1),v4(1)) = ged(0,1) = 1.
For n > 2,
a(n) a(n—1) 1 an
ST T el =T7) =1
5(n) Dy
ged(B(n), B(n — 1)) ged(B(n), B(n — 1)) '

This means that the fractions in equations are in lower terms. The four equations in the
statement of the theorem follow immediately. O

ged(vy(n),v3(n)) = ged (

ged(ve(n),v4(n)) = ged <

We finally prove Benoit Cloitre’s limiting result for the sequence (u(n,z):n > 1).

Theorem 11. For any real number x # 1 — we have

1
log 2’

z—1
1+ (z—1)log2|"

nh—>Holo lu(n,z) —u(n,1)| = nh—>120 lu(n,x) —n| = ‘

Proof. 1t is easy to see that
(—1)"(z —1)

—1 (=1)k+t1 1 (=1)kt1 "
GRS P

u(n,z) —n =

Taking absolute values on both sides of the above equality and letting n — oo, we get the result in
the theorem. O



