Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
A081855
Decimal expansion of Gamma''(1).
4
1, 9, 7, 8, 1, 1, 1, 9, 9, 0, 6, 5, 5, 9, 4, 5, 1, 1, 0, 7, 9, 0, 7, 9, 1, 3, 0, 3, 0, 0, 1, 2, 6, 9, 4, 1, 5, 8, 7, 8, 3, 6, 7, 0, 4, 1, 4, 5, 6, 4, 2, 8, 1, 8, 0, 8, 8, 6, 3, 9, 1, 5, 6, 7, 3, 7, 2, 2, 7, 3, 2, 6, 4, 0, 9, 8, 9, 5, 7, 5, 4, 3, 4, 9, 4, 8, 9, 2, 1, 6, 9, 2, 5, 1, 4, 7, 4, 6, 8, 2, 6, 0, 7, 0, 4
OFFSET
1,2
COMMENTS
Also the decimal expansion of the Integral_{x>=0} exp(-x)*(log(x))^2 dx. - Robert G. Wilson v, Aug 18 2017
REFERENCES
Bruce C. Berndt, Ramanujan's notebooks Part II, Springer, p. 179
LINKS
Tom M. Apostol, Formulas for higher derivatives of the Riemann zeta function, Mathematics of Computation 44 (1985), p. 223-232.
FORMULA
The second derivative of Gamma(x) at x=1 is Gamma^2+zeta(2) = 1.97811199... where Gamma is the Euler constant and zeta(2) = Pi^2/6.
EXAMPLE
1.978111990655945110790791303001269415878367... [corrected by Georg Fischer, Jul 29 2021]
MATHEMATICA
EulerGamma^2 + Zeta[2] // RealDigits[#, 10, 105] & // First (* Jean-François Alcover, Apr 29 2013 *)
RealDigits[ Integrate[ Exp[-x]*Log[x]^2, {x, 0, Infinity}], 10, 111][[1]] (* Robert G. Wilson v, Aug 18 2017 *)
PROG
(PARI) Euler^2+zeta(2) \\ Charles R Greathouse IV, Aug 18 2017
(PARI) intnum(x=0, [oo, 1], exp(-x)*log(x)^2) \\ Charles R Greathouse IV, Aug 18 2017
(Magma) SetDefaultRealField(RealField(100)); R:= RealField(); L:=RiemannZeta(); EulerGamma(R)^2 + Evaluate(L, 2); // G. C. Greubel, Aug 29 2018
CROSSREFS
Sequence in context: A232128 A336081 A086278 * A019887 A163931 A277774
KEYWORD
cons,nonn
AUTHOR
Benoit Cloitre, Apr 11 2003
STATUS
approved