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Asymptotic approximations for some prime multiplets 
 
Let Π(m,n) be the frequency of prime multiplets p≤n.  

m=1: (p) → prime 
m=2: (p, p+2) →twin prime 
m=3: (p, p+2, p+6), type 1 or (p, p+4, p+6), type 2→prime triplet 
m=4: (p, p+2, p+6, p+8)→prime quadruplet 
m=5: (p, p+2, p+6, p+8, p+12) , type 1 
   or (p, p+4, p+6, p+10, p+12) , type 2→prime quintuplet 

 
H. Hardy and J. E. Littlewood first published, in 1923, several conjectures. One of them says that 
Π(m,n) is asymptotically equal to Π*(m,n) in formula (1). In the appendix I will give an elementary 
deduction of the formula (1) and the coefficients (2): 
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1  = 1.32032363 according to Hardy and  Littlewood. 

c(3) = 5.71649719,     c(4) = 4.15118086,   c(5) = 20.2635899 
 
The table shows that Π*(m,n) is a good approximation for Π(m,n) up to n = 109: 
 

n Π(2,n) Π
*(2,n) Π(3,n) Π *(3,n) Π(4,n) Π*(4,n) Π(5,n) Π*(5,n) 

108 440311 440368 111156 110982 4767 4735 1383 1422 
2·108 813370 813779 196836 196975 8096 8057 2264 2285 
3·108 1166479 1167169 275821 276136 10972 11031 3002 3036 
4·108 1507732 1508435 350443 351257 13712 13804 3670 3724 
5·108 1840169 1841093 422440 423553 16330 16440 4309 4370 
6·108 2166300 2167124 492692 493699 18838 18971 4938 4984 
7·108 2486867 2487794 560968 562122 21274 21420 5540 5573 
8·108 2802750 2803980 628138 629114 23659 23800 6126 6142 
9·108 3115261 3116322 694355 694888 26081 26123 6700 6693 
109 3424505 3425308 759256 759606 28387 28397 7221 7230 

 
The formulas can be based on a stochastic conjecture, see (4.3): 

(4.1) The formula is proven for m=1: The asymptotic density of primes is f(n)= 1/log(n). 
(4.2) A random variable r(n) taking the value 1 with this probability (and 0 else) creates the 

same asymptotic distribution of the cumulated variable (expected value) as another variable 
q(n) with q(n)= 1 / 0 if n is prime / not prime. By using a sieve and so excluding as many 
non-primes as possible we can calculate the probability that a pair (n,n+2) or another 
multiplet is randomly selected. 

(4.3) The conjecture is that we can re-interpret this probability density as a “true” density and so 
find the formulas above for the distribution of prime multiplets. 
Moreover, we can compare the difference s = Π(m,n) - Π*(m,n) with the standard deviation 
σ = n)(m,*Π  (because of f(n)<<1).  
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Visualization of the deviation of Π(m,n) from Π*(m,n): 

(y-axis: unit σ    x-axis: n ≤ 109) 
 

 
m=1,2: primes and twins 

 
m=3: prime triplets 

 
m=4: prime quadruplets 

 
m=5: prime quintuplets 

 
 
 

Appendix: Deduction of the formula (1) and the coefficients (2): 
k-primes 
Let p1=2, p2=3, .. the sequence of primes. A number x which is prime to any pj≤pk will be called a 
k-prime. x will be also called a (m,k)-multiplet for m>1 : 

m=2: k-twin, if x and x+2 are k-primes 
m=3: k-triplet, if x, x+2 (4) and x+6 are k-primes, type 1 (2) 
m=4: k-quadruplet, if x, x+2, x+6 and x+8 are k-primes 
m=5: k-quintuplet, if x, x+2 (4), x+6, x+8 (10) and x+12 are k-primes, type 1 (2) 

Note: k-triplets and k-quintuplets of type 2 are included later, see (A6). 
 
Let Q(m,k), k>1, be the sequence of (m,k)-multiplets. 
 
Examples for k≤3:  

(A1) Q(1,1)= (3,5,7,9,11,..), odd numbers.  
Removing the multiples of p2=3 we obtain 

(A2)Q(1,2)= (5,7,11,13,17,19,23,25,29,31,35, ..)  
This sequence can be split up into two arithmetic progressions (5,11,17,23, ..) and   
(7,13,19,25, ..) with the difference d2=2·3=6. 
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Each of them can be split up into 5 subsequences (difference d3 = 
2·3·5 = 30): By removing the multiples of p3=5, eight progressions 
remain in Q(1,3), three (11,.. 17,.. 29,..) in Q(2,3), two (11,.. 17,..) in 
Q(3,3) and one (11,..) in Q(4,3) as well as in Q(5,3). See right table. 
 
Q(m,k) is the union of q(m,k) arithmetic progressions with the 

difference dk =∏
=

k

1j
jp . Here are some values of q(m,k):     

(A3)  q(1,1)=1,  q(1,2)=2,  q(1,3)=8,  q(2,2)=q(3,2)=q(4,2)=q(5,3)=1 

5 35 65 … 
7 37 67 … 
11 41 71 … 
13 43 73 … 
17 47 77 … 
19 49 79 … 
23 53 83 … 
25 55 85 … 
29 59 89 … 
31 61 91 … 

  
Recurrence for q(m,k):  
 
m=1 
Any arithmetic progression in Q(1,k-1) with the difference dk-1 can be split up into pk progressions 
with the difference dk = pk· dk-1. They belong to different residue classes (mod pk) because pk and 
dk-1 are relatively prime. By removing the progression representing the class 0 (mod pk) in Q(1,k) 
we erase one k-prime and obtain  
q(1,k) = q(1,k-1)· (pk-1). 
 
m=2 
Each (k-1)-twin belongs to a pair of progressions in Q(2,k-1). Executing the step  
k-1→k we remove the 2 subsequences with 0 (mod pk). This way two k-twins are erased with the 
result: q(2,k) = q(2,k-1)· (pk-2). 
 
m≤5     (A4) Generalization: q(m,k) = q(m,k-1)· (pk-m). 
There seems to be a problem with m=3. K-triples do overlap when they are part of a quintuple. 
Then only 5 (instead of 2·3=6) subsequences with 0 (mod pk) are removed. But with the 
subsequence belonging to the overlapping number two k-triples are erased so that recurrence 
(A4) is correct for m=3. It also holds for m=5 in the case of overlapping quintuples. 
 
The recurrence (A4) is valid for pk>m, i.e. k>km with k1 = 1, k2 = k3 = k4 = 2, k5 = 3 
 
Recurrence for the density δ(m,k) of Q(m,k): 
  
Generally: The density of a sequence, being the union of n (n≤d) arithmetic progressions with the 

difference d, is n/d. 
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Inclusion of k-triples and k-quintuples of type 2.  
 
Their number is the same as of type 1. So we replace q(m,k) by 2q(m,k) for m=3, 5.  
This leads to the basic densities δ(m, km): 

(A6)  δ(1,1) = ½, δ(2,2)= 1/6, δ(3,2)= 2/6, δ(4,2)= 1/6, δ(5,3)= 2/30 
and δ(1,2)= 2/6, δ(1,3)= 8/30 
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A stochastic approach to a conjecture 
 
Let u(m,n) be the asymptotic density of prime multiplets. For primes there are well known 
formulas:  

(A7) u(1,n)=
nlog

1
  and       Π(1,n) ≃ ∫

n

2 tlog
dt

=Li(n). 

 

w(m,k,n):=
)k,m(
)n,m(u

δ
can be thought of as the probability that a randomly selected (m,k)-multiplet is a 

prime multiplet.  
 
 
Conjecture: The events “n is a prime” and “n+x is a prime” are unrelated for any n, n+x Є Q(1,k). 

Then the probability that both events occur is, w(1,k,n)· w(1,k,n+x) or, for x=2 and 
large n: w(2,k,n) = w(1,k,n)2  or generally for multiplets:    

(A8) w(m,k,n) =  w(1,k,n)m 
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The concentration of primes in Q(m,k) increases with k, and so the transition k→∞ is reasonable. 
With c(m) := 

∞→k
lim  α(m,k) the conjecture is  

(A9) u(m,n)= 
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Coefficients used in (1) and (2) 
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