
A NOTE ON STEPHAN’S CONJECTURE 87

ELIZABETH WILMER

Recently Stephan [5] posted 117 conjectures based on an extensive analysis of
the On-line Encyclopedia of Integer Sequences [3, 4]. Here we prove conjecture 87.

Let Kn,m denote a complete bipartite graph with part sizes n and m, and let
Pn denote a path with n vertices. Fix an integer k > 1. Here we are concerned
with counting perfect matchings on the graphs Gn = K1,k−1 × P2n. (For k > 2,
there are no perfect matchings on K1,k−1 × P2n+1, which is bipartite with parts of
unequal size.)

For k = 2 and k = 3, this problem is equivalent to the extremely well-studied
problems of counting domino tilings of a 2-by-2n or 3-by-2n grid, respectively. See
[2], section 7.1, for an extensive discussion.

We give two versions of the central combinatorial argument (Lemma 1 and the
first proof of Lemma 3). The second argument, whose form was suggested by Henry
Cohn, is simpler. However, the work of the first yields some information on the
structure of the matchings (Corollary 2). The two recurrences derived are easily
seen to be equivalent (second proof of Lemma 3), so we follow only one path to the
generating function (Proposition 4).

Let’s name the vertices of Gn. Call c1, c2, . . . , c2n the centers, and call di,j ,
1 ≤ i ≤ 2n, 1 ≤ j ≤ k − 1 be the peripheral vertices. There two types of edges:

• Horizontal: {ci, di,j}, for i = 1, . . . , 2n and j = 1, . . . , k − 1.
• Vertical: {ci, ci+1} and {di,j , di+1,j} for 1 ≤ i ≤ 2n − 1, 1 ≤ j ≤ k − 1. We

say {ci, ci+1} and {di,j , di+1,j} are at level i.)

Lemma 1. Let k > 1 be a positive integer and let an be the number of perfect
matchings of the graph Gn. Then

a0 = 1, a1 = k,

and

an = kan−1 + (k − 1)(an−2 + an−3 + · · · + a0)

for n ≥ 2.

Proof. Because G0 has a single (null) matching, a0 = 1.
How many matchings does G1 have? Consider c2. If it is matched with c1, then

every peripheral vertex must be matched via a vertical edge. If, on the other hand,
c2 is matched to some d2,j via a horizontal edge, then c1 must be matched with d1,j

(for the same j!), and all other peripheral vertices are matched via vertical edges.
In every case, once we match c2, the rest of the matching is determined. Since c2

has degree k, we have a1 = k.
Now consider Gn for some n ≥ 2. If a matching contains no vertical edges at

level 2n−2, it consists of a matching of Gn−1, together with a matching of G1—the
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Figure 1. Sketch of a matching with a link at level 2n− 2. The
red (link) edges force all the orange edges. The matching must
include either the green edge or the blue edge. If green, then there
are no vertical edges at level 2n − 4. If blue, then all the purple
edges are forced, so there is a link in the same page at level 2n−4.

latter covers the vertices at levels 2n−1 and 2n. Clearly, there are an−1a1 = kan−1

such matchings.
What if there are vertical edges at level 2n− 2? There cannot be only one; if so,

then the remaining 2k − 1 vertices at levels 2n − 1 and 2n must be matched with
each other. However, the number of such vertices is odd.

There also cannot be two vertical edges at level 2n− 2 that are both peripheral.
If there were, say {d2n−2,r, d2n−1,r} and {d2n−2,s, d2n−1,s}, then both {d2n,r, c2n}
and {d2n,s, c2n} would have to be in the matching, which is impossible.

The only remaining possibility is that there are exactly two vertical edges at
level 2n− 2 in the matching, one of which is central and one of which is peripheral:
{c2n−2, c2n−1} and {d2n−2,r, d2n−1,r} for some 1 ≤ r ≤ k − 1. When this happens,
we say that there is a link at level 2n − 2 in page r.

When there is a link at level 2n− 2 in page r, the configuration of the matching
at higher levels is completely determined: the horizonal edge {c2n, d2n,r} must be
present, as must be all peripheral vertical edges at level 2n − 1 not in page r.
Similarly, all peripheral vertical edges at level 2n − 3, but not in page r, must be
present. (See Figure 1, where the link edges are shown in red and the forced edges
are shown in orange.)

Now consider c2n−3. It must be matched with either d2n−3,r (shown in green
in Figure 1) or c2n−4 (shown in blue in Figure 1). In the former case, no vertical
edges at level 2n− 4 can be used in the matching. Hence the entire matching splits
into two pieces: a matching of Gn−2, along with a configuration of the type shown
in Figure 1 in levels 2n − 3 and up. Since there are k − 1 possible pages in which
to place the link at level 2n − 2, there are (k − 1)an−2 such matchings.

If, instead, we join c2n−3 to c2n−4, then d2n−3,r must be matched to d2n−4,r, and
we must have a link at level 2n− 4 in page r. As before, no other vertical edges at
level 2n− 4 can be used, but all vertical edges outside of page r are forced at level
2n − 5 (see the purple edges in Figure 1).
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Now, vertex c2n−5 must be matched either horizontally or vertically. There will
be (k − 1)an−3 matchings in the former category. For the latter, there will be a
link forced at level 2n − 6, and so on...

To sum up: every matching of Gn will have a solidly linked section starting from
level 2n and running down to the first even level 2m where there are no vertical
edges present.

• When m = n−1, then, as we have noted, there are kan−1 possible matchings.
• When 1 ≤ m ≤ n−2, there are am ways to match the initial segment, and k−1

ways to build the solidly linked segment, for a total of (k − 1)am matchings.
• When every even level is linked, there are k−1 = (k−1)a0 possible matchings.

Hence

an = kan−1 + (k − 1)(an−2 + · · · + a0).

Corollary 2. Every perfect matching on Gn has the following properties:
1. No more than one edge from any horizontal level can be included.
2. At least k − 2 vertical edges from each odd level must be included.
3. From each even level, either zero or two vertical edges can be included. If two

vertical edges from an even level are present in the matching, one is central
and the other is peripheral.

4. If vertical edges from consecutive even levels are included, they must lie in the
same page of the graph.

Proof. By strong induction on n. The final linked segment of the matching (which
was the key to to the proof of Lemma 1) has all these properties; so (by the inductive
hypothesis) must the rest of the matching.

The second combinatorial argument, while closely related (of course!) to the
first argument, is simpler; it also directly derives the recurrence relation we want.
The many-to-one structure (which is illustrated beautifully clearly in the proof of
identity 7 of [1]) was suggested by Henry Cohn.

Lemma 3. Let k > 1 be a positive integer and let an be the number of perfect
matchings of the graph Gn. Then

a0 = 1, a1 = k,

and

an = (k + 1)an−1 − an−2.

for n ≥ 2.

Proof 1 (combinatorial). The computations for a0 = 1 and a1 = k go through as
before, of course. Now assume that n ≥ 2. We will build a correspondence between

• a multiset containing k + 1 copies of each matching on Gn−1, and
• the set containing all matchings on both Gn and Gn−2.

Once we have done so, it will immediately follow that

(k + 1)an−1 = an + an−2.

Now, on to the correspondence. Since each matching on Gn−1 can be extended to a
matching of Gn by appending any of the k matchings on G1, we can match k of the
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Figure 2. To construct a matching of Gn, linked at level 2n−2,
from a matching of Gn−1 with a horizontal edge (blue) at level
2n − 2, delete the horizontal edge (whose presence forces many
verticals at level 2n−3, shown in purple) and add in the red edges.

copies of each matching of Gn−1 to a matching of Gn with no link at level 2n − 2.
Furthermore, every such matching on Gn arises (exactly once) in this fashion.

What about the remaining (single) copies of the matchings of Gn−1? These must
be made to correspond to the matchings on Gn−2 and the matchings on Gn which
are linked at level 2n − 2.

Given a matching on Gn−1: if it contains all vertical edges at level 2n − 3,
deleting those edges yields a matching of Gn−2. Furthermore, every matching of
Gn−2 arises (exactly once) in this fashion.

Otherwise, the matching on Gn−1 must contain (exactly one) horizontal edge
at level 2n − 2, say, {c2n−2, d2n−2,r}. Build a new matching on Gn as follows:
include all edges of the original matching except {c2n−2, d2n−2,r}. Add in edges
{c2n−2, c2n−1}, {d2n−2,r, d2n−1,r}, {c2n, d2n,r}, and, for every s 	= r, {d2n−1,s, d2n,s}.
(See Figure 2.)

The resulting matching on Gn is linked at level 2n − 2. Furthermore, every
matching of Gn+1 linked at level 2n arises (exactly once) in this construction.

Proof 2 (from Lemma 1). Fix n ≥ 2. Then

an = kan−1 + (k − 1)(an−2 + · · · + a0)

= kan−1 + kan−2 + (k − 1)(an−3 + · · · + a0) − an−2

= kan−1 + an−1 − an−2.

Proposition 4 (Conjecture 87). Let k > 1 be a positive integer, let an be the num-
ber of perfect matchings of the graph K1,k−1 × P2n, and let A(x) =

∑∞
n=0 anxn.

Then

A(x) =
1 − x

1 − (k + 1)x + x2
.
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Proof. As Wilf enthusiastically recommends ([6], Chapter 1), we multiply each
equation listed in Lemma 3 by xn, then sum over n, obtaining

A(x) = 1 + kx +
∞∑

n=2

(k + 1)an−1x
n −

∞∑

n=2

an−2x
n

= 1 + kx + (k + 1)x(A(x) − 1) − x2A(x)

= 1 − x + A(x)
(
(k + 1)x − x2

)
.

Solving for A(x) yields the claimed formula.
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