Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A095151
a(n+3) = 3*a(n+2) - 2*a(n+1) + 1 with a(0)=0, a(1)=2.
14
0, 2, 7, 18, 41, 88, 183, 374, 757, 1524, 3059, 6130, 12273, 24560, 49135, 98286, 196589, 393196, 786411, 1572842, 3145705, 6291432, 12582887, 25165798, 50331621, 100663268, 201326563, 402653154, 805306337, 1610612704, 3221225439
OFFSET
0,2
COMMENTS
A sequence generated from a Bell difference row matrix, companion to A095150.
A095150 uses the same recursion rule but the multiplier [1 1 1] instead of [1 0 0].
For n>0, (a(n)) is row 2 of the convolution array A213568. - Clark Kimberling, Jun 20 2012
For n>0, (a(n)) is row 2 of the convolution array A213568. - Clark Kimberling, Jun 20 2012
LINKS
Péter Burcsi, Gabriele Fici, Zsuzsanna Lipták, Rajeev Raman, Joe Sawada, Generating a Gray code for prefix normal words in amortized polylogarithmic time per word, arXiv:2003.03222 [cs.DS], 2020.
FORMULA
Let M = a 3 X 3 matrix having Bell triangle difference terms (A095149 is composed of differences of the Bell triangle A011971): (fill in the 3 X 3 matrix with zeros): [1 0 0 / 1 1 0 / 2 1 2] = M. Then M^n * [1 0 0] = [1 n a(n)].
a(n) = 3*2^n -(n+3) = 2*a(n-1) + n +1 = A000295(n+2) - A000079(n). For n>0, a(n) = A077802(n). - Henry Bottomley, Oct 25 2004
From Colin Barker, Apr 23 2012: (Start)
a(n) = 4*a(n-1) - 5*a(n-2) + 2*a(n-3).
G.f.: x*(2-x)/((1-x)^2*(1-2*x)). (End)
a(n) = A125128(n) + A000225(n). - Miquel Cerda, Aug 07 2016
a(n) = 2*A125128(n) - A000325(n) + 1. - Miquel Cerda, Aug 12 2016
a(n) = A125128(n) + A000325(n) + n - 1. - Miquel Cerda, Aug 27 2016
E.g.f.: 3*exp(2*x) - (3+x)*exp(x). - G. C. Greubel, Jul 26 2019
Let Prod_{i=0..n-1} (1+x^{2^i}+x^{2*2^i}) =
Sum_{j=0..d} b_j x^j, where d=2^{n+1}-2. Then
a(n)=Sum_{j=0..d-1} b_j/b_{j+1} (proved). - R. P. Stanley, Aug 27 2019
EXAMPLE
a(6) = 183 = 3*88 -2*41 + 1.
a(4) = 41 since M^4 * [1 0 0] = [1 4 41].
MAPLE
a[0]:=0:a[1]:=0:for n from 2 to 50 do a[n]:=2*a[n-1]+n od: seq(a[n], n=1..31); # Zerinvary Lajos, Feb 22 2008
MATHEMATICA
a[n_] := (MatrixPower[{{1, 0, 0}, {1, 1, 0}, {2, 1, 2}}, n].{{1}, {0}, {0}})[[3, 1]]; Table[ a[n], {n, 30}] (* Robert G. Wilson v, Jun 05 2004 *)
Table[3*2^n -(n+3), {n, 0, 30}] (* G. C. Greubel, Jul 26 2019 *)
PROG
(PARI) vector(30, n, n--; 3*2^n -(n+3)) \\ G. C. Greubel, Jul 26 2019
(Magma) [3*2^n -(n+3): n in [0..30]]; // G. C. Greubel, Jul 26 2019
(Sage) [3*2^n -(n+3) for n in (0..30)] # G. C. Greubel, Jul 26 2019
(GAP) List([0..30], n-> 3*2^n -(n+3)); # G. C. Greubel, Jul 26 2019
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Gary W. Adamson, May 30 2004
EXTENSIONS
Edited by Robert G. Wilson v, Jun 05 2004
STATUS
approved