Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
A097364
Triangle read by rows, 0 <= k < n: T(n,k) = number of partitions of n such that the differences between greatest and smallest parts are k.
15
1, 2, 0, 2, 1, 0, 3, 1, 1, 0, 2, 3, 1, 1, 0, 4, 2, 3, 1, 1, 0, 2, 5, 3, 3, 1, 1, 0, 4, 4, 6, 3, 3, 1, 1, 0, 3, 6, 6, 7, 3, 3, 1, 1, 0, 4, 6, 10, 7, 7, 3, 3, 1, 1, 0, 2, 9, 10, 12, 8, 7, 3, 3, 1, 1, 0, 6, 6, 15, 14, 13, 8, 7, 3, 3, 1, 1, 0, 2, 11, 15, 20, 16, 14, 8, 7, 3, 3, 1, 1, 0, 4, 10, 21, 22, 24, 17
OFFSET
1,2
COMMENTS
Sum_{k=0..n-1} T(n,k) = A000041(n); T(n,0) + T(n,1) = n for n > 1;
T(n,0) = A000005(n); T(n,1) = A049820(n) for n > 1;
T(n,2) = floor((n-2)/2)*(floor((n-2)/2) + 1)/2 = A000217(floor((n-2)/2)) = A008805(n-4) for n > 3.
Without the 0's (which are of no consequence for the triangle) this sequence is A116685. - Emeric Deutsch, Feb 23 2006
LINKS
G. E. Andrews, M. Beck and N. Robbins, Partitions with fixed differences between largest and smallest parts, arXiv:1406.3374 [math.NT], 2014.
FORMULA
G.f.: Sum_{i>=1} x^i/((1 - x^i)*Product_{j=1..i-1} (1 - t*x^j)). - Emeric Deutsch, Feb 23 2006
EXAMPLE
Triangle starts:
01: 1
02: 2 0
03: 2 1 0
04: 3 1 1 0
05: 2 3 1 1 0
06: 4 2 3 1 1 0
07: 2 5 3 3 1 1 0
08: 4 4 6 3 3 1 1 0
09: 3 6 6 7 3 3 1 1 0
10: 4 6 10 7 7 3 3 1 1 0
11: 2 9 10 12 8 7 3 3 1 1 0
12: 6 6 15 14 13 8 7 3 3 1 1 0
13: 2 11 15 20 16 14 8 7 3 3 1 1 0
14: 4 10 21 22 24 17 ...
- Joerg Arndt, Feb 22 2014
T(8,0)=4: 8=4+4=2+2+2+2=1+1+1+1+1+1+1+1,
T(8,1)=4: 3+3+2=2+2+2+1+1=2+2+1+1+1+1=2+1+1+1+1+1+1,
T(8,2)=6: 5+3=4+2+2=3+3+1+1=3+2+2+1=3+2+1+1+1=3+1+1+1+1+1,
T(8,3)=3: 4+3+1=4+2+1+1=4+1+1+1+1,
T(8,4)=3: 6+2=5+2+1=5+1+1+1,
T(8,5)=1: 6+1+1,
T(8,6)=1: 7+1,
T(8,7)=0;
Sum_{k=0..7} T(8,k) = 4+4+6+3+3+1+1+0 = 22 = A000041(8).
MAPLE
g:=sum(x^i/(1-x^i)/product(1-t*x^j, j=1..i-1), i=1..50): gser:=simplify(series(g, x=0, 18)): for n from 1 to 15 do P[n]:=coeff(gser, x^n) od: 1; for n from 2 to 15 do seq(coeff(P[n], t, j), j=0..n-1) od;
# yields sequence in triangular form # Emeric Deutsch, Feb 23 2006
MATHEMATICA
rows = 14; max = rows+2; col[k0_ /; k0 > 0] := col[k0] = Sum[x^(2*k + k0) / Product[(1-x^(k+j)), {j, 0, k0}], {k, 1, Ceiling[max/2]}] + O[x]^max // CoefficientList[#, x]&; col[0] := Table[Switch[n, 1, 0, 2, 1, _, n - 1 - col[1][[n]]], {n, 1, Length[col[1]]}]; Table[col[k][[n+2]], {n, 0, rows-1 }, {k, 0, n}] // Flatten (* Jean-François Alcover, Sep 10 2017, after Alois P. Heinz *)
PROG
(Haskell)
a097364 n k = length [qs | qs <- pss !! n, last qs - head qs == k] where
pss = [] : map parts [1..] where
parts x = [x] : [i : ps | i <- [1..x],
ps <- pss !! (x - i), i <= head ps]
a097364_row n = map (a097364 n) [0..n-1]
a097364_tabl = map a097364_row [1..]
-- Reinhard Zumkeller, Feb 01 2013
CROSSREFS
Cf. A116685 (same sequence with zeros omitted).
Columns k=3..10 give A128508, A218567, A218568, A218569, A218570, A218571, A218572, A218573. T(2*n,n) = A117989(n). - Alois P. Heinz, Nov 02 2012
Sequence in context: A195050 A127371 A036849 * A254204 A321361 A319517
KEYWORD
nonn,tabl
AUTHOR
Reinhard Zumkeller, Aug 09 2004
STATUS
approved