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The well-known Euler-Gauss formula for the Gamma function:  
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may be regarded as a limit involving a recursive sequence of order 1. Indeed, defining t 
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In this note we consider recursive sequences of higher order yielding the Gamma function in a 
similar way. First, we will present 2 symmetrical recursive sequences of order 2 (which are an 
extension of an earlier result) and corollaries allowing us to have aesthetic relations between e 
and π. Then we will discuss 2 generalizations for both sequences at any order, which are 
themselves derived from a more general property of the Gamma function (as we will see in 
the last section). This study led to an infinite set of constants where e, π and γ  are again 
strongly connected. Proofs are omitted in this long presentation and include matrix relations, 
theorems on asymptotic behaviour of coefficients of certain generating functions, as well as 
known relations for certain values of Gamma and Digamma functions evaluated at rational 
arguments. It is relevant to this study to determine precisely the behaviour of linear recursions 
with varying coefficients at arbitrary order. 
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A. The order 2 
 
 

1) Two symmetrical recursive sequences  
 
Let  be any suitable complex number (i.e. not a negative integer) and ( )  , 

be the 2 recursions defined “symmetrically” as follows: 
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then for any suitable z1 and z2 we get the “dual” formulas: 
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2) e and π   in a mirror  
 
The above sequences of order 2 were already described for specific values in [1] [2] [3] 
[4] [5]. That was ( ) ( 1,0, 21 =zz )  for u and ( ) ( )0,2/1, 21 =zz  for v. Since π=)2/1( ,Γ  
under those conditions, we have the simple mirror relationship between the 2 famous 
constants: 
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3) A pretty “discrete” generalization  
 
Let  be an integer and u and v be defined as follows:  0≥m
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let now f and g denote the following functions of m: 
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2 integer sequences a =  , b = ( ) 0≥kka ( )kkb 0≥  and 2 rational sequences p = ( )  , q = 
 such that we get the twin formulas: 
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which seems to be an elegant relation between e and π. More precisely, we have: 
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It is possible to obtain formulas for various starting values. For example, if m = 0 and: 

 
       yvuxvu ==== 2211   ,  
 

  

n
n

n

n
nn

v
n

vv

n
uuu

+=

+=

+
+

++

1
2

12

 

 

 3



Then we get: 
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In general, for any integer m, if { }  α  denotes the fractional part of α, there is a closed form 
formula for u: 
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and regarding v: 
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4) Gosper’s continued fraction 
 
Aware of an earlier draft mentioning this v recursion, Bill Gosper [6] promptly derived an 
infinite product of matrices leading to the following weird continued fraction: 
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5) The « low » generalization 
 
We would also like to mention a function E derived from the following u-type recursion 
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satisfies: 
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where )1 ,(zγ  is the lower incomplete Gamma function:  [7].  duuez zu 1
1
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E also satisfies the functional equation 1)( )2()1( =+++ zEzzE ; but I won’t digress here on 
this kind of “low” generalization, preferring the “high” one as we will see in the next sections. 
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B. u and v at any order 
 
 
Remarkably, sequences u and v can be generalized further. Specifically, there are 2 
“symmetrical” recursive sequences at any order, yielding the Gamma function in a similar 
way as for order 2.  
 
To do this, let 2≥r  be an integer and let rzzzz +++= ...21  be any suitable complex 
number (i.e. not a negative integer), and define 2 “symmetrical” recursions u and v , both of 
order r , as follows: 
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Then there are 2 families of positive real constants ( )

riir ≤≤1 ,λ  and ( )
riir ≤≤1 ,µ  such that for any 

suitable (zi)1≤ i ≤ r we get the striking formulas: 
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There is a big difference here: ( )

riir ≤≤1 ,λ  don’t depend on r while ( )
riir ≤≤1 ,µ depend on r.  

 
Namely: 
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Unfortunately, despite this apparent symmetry, it was not so immediate to derive a general 
formula for ( )

riir ≤≤1 ,µ . By the way, those important properties for ( )
riir ≤≤1 ,µ  suggested more 

was true:  
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  i ,i  ,  rr µαµ αα =   
 
Indeed, those properties come from a much more general result described subsequently. Note 
that the case r = 2 is easily determined since then 2/11 ,2 =µ  and 22 ,2 =µ .  
 
Remark:  
 
It can be shown that  generates integer sequences for some values of , as in 
the case , m integer. An interesting example of order 2 is 

 yielding sequence n°A006918 in [8]. Also, 
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generating functions; e.g.,     
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C. The order 3: an unexpected appearance of π 
 
 
 

 
Order 3 for u and v sequences gives: 
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thus an interesting constant arises: c = 1.4298843084…. with the amazing closed form 
originally conjectured by Paul D. Hanna: 
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For order r >3, let’s go to the next section where we will see the reason why it is not so 
unexpected.  
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D. The generalized Euler-Gauss formula  
 
 
The Gamma function obeys a much more general rule. We will mention the main result and 
the last possible recursion of order 3, providing a complete set of associated constants in that 
case. Finally, we will introduce an infinite table of constants possessing astonishing 
properties. We will provide a closed form formula for them, revealing a part of the mystery of 
the Gamma function. Computation played a great role here, and we believe that mathematics 
by experiments is indeed plausible reasoning in the 21-st century [9]. 
 

1) The generalized Euler-Gauss formula  
 
Let 1≥r  and 1  be fixed integers, let (z, zrs ≤≤ i)1≤ i ≤ r  be any suitable complex numbers 
(re(z) > 0, re(zi) > 0 for all 1  are sufficient conditions) satisfying . ri ≤≤ rzzzz +++= ...21

 
Define the recursion w of order r, depending on s, as follows: 
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The previous section dealt with the special cases s = 1 and s = r, giving u and  v,  respectively.   
 

2) The last case of order 3  
 
Taking s = 2 gives:  
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3) The table of constants  

 
We saw that the 3 possible recursions of order 3 for s = 1, 2, and 3, involve 9 constants. 
Therefore it is interesting to associate a table of constants as described with the following 3 × 
3 array for the constants ( )

3s1 ,31s, ,3 ≤≤≤≤iiσ : 
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Similarly, there is a table of constants for any order r and rs ≤≤1 . In fact, the table of 
constants of order r contains the constants of order r-1; thus all constants can be represented 
with a single infinite array ( )
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Those relations are a consequence of the general formula first suggested by Paul D. Hanna: 
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where γ  is the Euler’s constant [10] and 
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Thus, one can rewrite the generalized Euler-Gauss formula in D.1. as follows: 
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The table of constants contains nice identities mainly due to the Gauss’s Digamma theorem 
[12], which allows us to evaluate the Digamma function at rational values: 
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The reflection and duplication formulas are also useful: 
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The table of constants ( )k,nc  for 1 8, ≤≤ kn  is given thereafter (with exact formulas when 
simple enough) as well as the corresponding numerical table and a graph showing the 
behaviour of c(n, k) as k grows.  
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The 8×8 table of constants c(n, k)  
 

n   k 1        2 3 4 5 6 7 8

1 1 e  2/3e  6/11e  12/25e  5He  6He  7He  

2 
2
1  2  2

2
1 e  

e2  3/8

2
1 e  

2/32e  15/46

2
1 e  

6/112e  

3 12/

3
1 π−e  12/

3
1 πe  

3  
12

3

3
1

π
−

e  122
3

3
1

π
+

e  
e3  

124
15

3
1

π
−

e  1210
21

3
1

π
+

e  

4 2/

2
1 π−e  1 2/

2
1 πe  4  

2
4

2
1 π

−
e  

2e  
23

4

2
1 π

+
e  

e4  

5 5/21
2

2/54/15
1 +−

Φ

π

e  
5/21

2
4/1

2/5

5
−−Φ π

e
5/21

2
4/1

2/5

5
−Φ π

e  
5/21

2
2/54/15

1 +

Φ

π

e
5 γψ +








5
6

5e  
γψ +








5
7

5e  
γψ +








5
8

5e  

6 3
2

12
1 ⋅−

π

e  
12/

3
2 π−e  

3/2 12/

3
2 πe  3

2

12
1 ⋅

π

e  
6 3

2
6

12
1 ⋅−

π

e  12
3

3
2

π
−

e  

7 γψ +







7
1

7e  
γψ +








7
2

7e  
γψ +








7
3

7e  
γψ +








7
4

7e  
γψ +








7
5

7e  
γψ +








7
6

7e  
7 γψ +








7
8

7e  

8 )21(
2

2)21(2
1 +−

+

π

e
2/π−e  )12(

2
2

2
)21( −−+ π

e
2 )12(

2
2

2
)21( −+ π

e
2/πe  )21(

2
2)21(2

1 +

+

π

e  
8 

 

 11



The 8 × 8 table for c(n ,k) numerical values 
 
 

 

n  \  k 1 2 3 4 5 6 7 8 

1 1 2,71828183 4,48168907 6,25470095 8,031195 9,80932372 11,5883467 13,3679111 

2 0,5 2 3,69452805 5,43656366 7,19595805 8,96337814 10,7351079 12,5094019 

3 0,23311909 1,42988431 3 4,68232215 6,40829688 8,15484549 9,91247608 11,67667821 

4 0,10393979 1 2,40523869 4 5,67492015 7,3890561 9,1246768 10,8731273 

5 0,04494183 0,6874742 1,907959 3,392764 5 6,668 8,373 10,098 

6 0,01900311 0,46623819 1,5 2,85976862 4,38524599 6 7,66640372 9,36464431 

7 0,0079 0,312 1, 1704 2,397 3,83 5,379 7 8,662 

8 0,00324104 0,20787958 0,909 2 3,3332 4,81047738 6,3766 8 
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The graphs of c(n, k) as functions of k, for n =1 up to 8 and k =1 up to 8 
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