Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
A104541
Decimal expansion of lambda(4) in Li's criterion.
18
3, 6, 8, 7, 9, 0, 4, 7, 9, 4, 9, 2, 2, 4, 1, 6, 3, 8, 5, 9, 0, 5, 1, 1, 4, 8, 9, 6, 3, 7, 7, 5, 6, 0, 7, 2, 2, 6, 2, 1, 6, 6, 6, 9, 3, 9, 6, 0, 8, 5, 2, 8, 0, 4, 8, 2, 3, 1, 1, 8, 8, 5, 6, 8, 5, 0, 9, 4, 6, 2, 5, 3, 2, 2, 6, 5, 7, 7, 9, 0, 2, 6, 2, 9, 0, 3, 1, 5, 2, 8, 3, 9, 8, 6, 0, 1, 5, 5, 8, 4, 2, 1
OFFSET
0,1
LINKS
E. Bombieri and J. C. Lagarias, Complements to Li's Criterion for the Riemann Hypothesis, J. Number Th. 77(2) (1999), 274-287.
M. W. Coffey, Relations and positivity results for derivatives of the Riemann xi function, J. Comput. Appl. Math. 166(2) (2004), 525-534.
Xian-Jin Li, The positivity of a sequence of numbers and the Riemann hypothesis, J. Number Th. 65(2) (1997), 325-333.
Eric Weisstein's World of Mathematics, Li's Criterion.
Eric Weisstein's World of Mathematics, Riemann Zeta Function Zeros.
Wikipedia, Li's criterion.
FORMULA
3*Pi^2/4 + Pi^4/96 - 2*log(4) - 2*log(Pi) + 2*gamma - 6*gamma^2 + 4*gamma^3 - gamma^4 - 12*gamma(1) + 12*gamma*gamma(1) - 4*gamma^2*gamma(1) - 2*gamma(1)^2 + 6*gamma(2) - 2*gamma*gamma(2) - 2*gamma(3)/3 - 7*zeta(3)/2 + 1. - Jean-François Alcover, Jul 02 2014
EXAMPLE
0.368790479...
MATHEMATICA
lambda[n_] := Limit[D[s^(n - 1) Log[RiemannXi[s]], {s, n}], s -> 1]/(n - 1)!; RealDigits[N[lambda[4], 110]][[1]][[1 ;; 102]] (* Jean-François Alcover, Oct 31 2012, after Eric W. Weisstein, updated May 18 2016 *)
RealDigits[With[{e = EulerGamma, g = StieltjesGamma}, 1 + 2 e - 6 e^2 + 4 e^3 - e^4 + 3 Pi^2/4 + Pi^4/96 - 12 g[1] + 12 e g[1] - 4 e^2 g[1] - 2 g[1]^2 + 6 g[2] - 2 e g[2] - 2 g[3]/3 - 2 Log[4 Pi] - 7 Zeta[3]/2], 10, 110][[1]] (* Eric W. Weisstein, Feb 08 2019 *)
CROSSREFS
Cf. A074760 (lambda_1), A104539 (lambda_2), A104540 (lambda_3), A104542 (lambda_5).
Cf. A306339 (lambda_6), A306340 (lambda_7), A306341 (lambda_8).
Sequence in context: A248760 A011261 A371749 * A202300 A244467 A200590
KEYWORD
nonn,cons
AUTHOR
Eric W. Weisstein, Mar 13 2005
STATUS
approved