
NUMERICAL CONSTRUCTION OF BHASKARA PAIRS

RICHARD J. MATHAR

Abstract. We construct integer solutions (a, b) to the coupled system of dio-

phantine equations a2 + b2 = x2 and a3 + b3 = y2 for fixed ratios b/a.

1. Pair of Coupled Nonlinear Diophantine Equations

1.1. Scope. Following a nomenclature of Gupta we define:

Definition 1. A Bhaskara pair is a pair (a, b) of integers that solve the system of
Diophantine equations

(1) a2 + b2 = x3 ∧ a3 + b3 = y2

for some pair (x, y).

Remark 1. Values of a and b are gathered in the OEIS [7, A106319,A106320].

The symmetry of the equations indicates that without loss of information we can
assume 0 ≤ a ≤ b.

We will not look into solutions where a or b are rational integers (fractional
Bhaskara pairs).

The two equations can be solved individually. The applicable literature on that
subject however will be ignored in the subsequent quick analysis [1, 3, 2].

Given any solution (a, b), other solutions (as6, bs6) are derived by multiplying
both a and b by a sixth power of an integer s, multiplying at the same time x by
s4 and y by s9. One may call the solutions where a and b have no common 6-full
divisor (i.e., have no divisor that is an integer multiple of a sixth power larger than
1) fundamental Bhaskara pairs.

1.2. Primitive Solutions. A first family of solutions is found assuming a = 0.
This reduces the equations to

(2) b2 = x3 ∧ b3 = y2.

x3 must be a perfect cube, so in the canonical prime power factorization of x3 all
exponents of the primes must be multiples of three. Also in the canonical prime
power factorization of b2 all exponents must be even. So the first equation demands
that the exponents on both sides must be multiples of [2, 3] = 6, where square
brackets [., .] indicate the least common multiple. In consequence all b must be
perfect cubes. Likewise the second equation demands that the exponents of b3 and
of y2 are multiples of 6. In consequence all b must be perfect squares. Uniting both
requirements, all b must be perfect 6th powers. And this requirement is obviously
also sufficient: perfect 6th powers [7, A001014] generate Bhaskara pairs:
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k 1 + k2 1 + k3

1 2 2
2 5 32

3 2× 5 22 × 7
4 17 5× 13
5 2× 13 2× 32 × 7
6 37 7× 31

Table 1. Prime factorizations of 1 + k2 and 1 + k3

Theorem 1. All integer pairs (0, n6), n ∈ Z0 are Bhaskara pairs. The associated
right hand sides are (x, y) = (n4, n9).

1.3. Bhaskara Twins. Another family of solution are the Bhaskara twins defined
by solutions with a = b [7, A106318]:

(3) 2a2 = x3 ∧ 2a3 = y2.

Working modulo 2 in the two equations requires that x3 and y2 are even, so x and
y must be even, say x = 2α, y = 2β. So

(4) a2 = 4α3 ∧ a3 = 2β2.

The first equation requires by the right hand side that in the canonical prime power
factorization of both sides the exponents of the odd primes are multiples of 3 and
the exponent of the prime 2 is ≡ 2 (mod 3); it requires by the left hand side that
all exponents are even. So the exponents of the odd primes are multiples of 6, and
the exponent of 2 is ≡ 2 (mod 6). So from the first equation a = 21+3×33×53× · · · ,
which means a is twice a third power. The notation 3× in the exponents means
“any multiple of 3.”

The second equation in (4) demands by the right hand side that the exponents
of the odd primes are even and the exponent of 2 is ≡ 1 (mod 2). Furthermore
by the left hand side all exponents are multiples of 3. This means all exponents of
the odd primes are multiples of 6, and the exponent of the prime 2 is ≡ 3 (mod 6)
So from the 2nd equation a = 21+2×32×52× · · · , which means a must be twice a
perfect square. Uniting both requirements, a must be twice a 6th power. It turns
out that obviously that requirement is also sufficient to generate solutions:

Theorem 2. All integer pairs (2n6, 2n6), n ∈ Z0 are Bhaskara pairs. The associ-
ated right hand sides are created by (x, y) = (2n4, 4n6).

2. Integer Ratios of the two Members

2.1. Prime Factorization. There may be solutions where a | b, so b = ka for
some integer k > 1. The previous section, Equation (3), covers the solutions of the
special case k = 1.

(5) (1 + k2)a2 = x3 ∧ (1 + k3)a3 = y2

The equations have prime factorizations that are only special with respect to the
prime facto decomposition of 1 + k2 and 1 + k3:
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Define prime power exponents ci, di, ai, xi and yi as follows, where pi is the i-th
prime:

1 + k2 = 2c13c25c3 · · · =
∏
i

pcii ,(6)

1 + k3 = 2d13d25d3 · · · =
∏
i

pdi
i ,(7)

a = 2a13a25a3 · · · =
∏
i

pai
i ,(8)

x = 2x13x25x3 · · · =
∏
i

pxi
i ,(9)

y = 2y13y25y3 · · · =
∏
i

pyi

i(10)

Insertion of these prime factorizations into (5) requires for all i ≥ 1

ci + 2ai = 3xi(11a)

di + 3ai = 2yi(11b)

for unknown sets of ai, xi, yi and known ci, di (if k is fixed and known). For some
sufficiently large i (i larger than the index of the largest prime factor of [1 +k2, 1 +
k3]) we have ci = di = 0 because the least common multiples are finite once k is
fixed. For these

2ai = 3xi(12a)

3ai = 2yi(12b)

The first equation requires 2 | xi and 3 | ai for sufficiently large i. The second
equation requires 3 | yi and 2 | ai for sufficiently large i. The combination requires
also 6 | ai for sufficiently large i, so essentially (apart from factors) a is a 6th power,
x is a square and y is a cube.

In practice we use the Chinese Remainder Theorem (CRT) for all i, whether the
ci or di are zero or not [6, 4]. Multiply (11a) by 3 and (11b) by 2,

(13) 3ci + 6ai = 9xi ∧ 2di + 6ai = 4yi

such that the two factors in front of the ai are the same, and work modulo 9 in the
first equation and modulo 4 in the second:

6ai ≡ −3ci (mod 9);(14a)

6ai ≡ −2di (mod 4).(14b)

We compute 6ai (mod 9 × 4) by any algorithm [5], so ai is determined (mod 6)
and creates a fundamental solution.

The results will be illustrated for a set of small k in Tables 2–10. There are 4
columns, the prime index i, the exponents ci and di defined by the prime factoriza-
tion of 1 + k2 and 1 + k3, and the factor pai

i generated by the CRT, which occurs

besides the p6×i . The cases (rows) where ci = di = 0 are not tabulated; they would
be absorbed in the 6th powers of non-fundamental solutions.
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i ci di pai
i

2 0 2 30

3 1 0 54

Table 2. The Chinese remainder solutions for k = 2. Fundamen-
tal solution a = 54.

i ci di pai
i

1 1 2 24

3 1 0 54

4 0 1 73

Table 3. The Chinese remainder solutions for k = 3. Fundamen-
tal solution a = 24 × 54 × 73.

i ci di pai
i

3 0 1 53

6 0 1 133

7 1 0 174

Table 4. The Chinese remainder solutions for k = 4. Fundamen-
tal solution a = 53 × 133 × 174.

2.2. k=2. Looking at the second line of Table 1 we have only special contributions
for primes p2 = 3 and p3 = 5: c1 = 0, d1 = 2, c2 = 1, d2 = 0; the i ≥ 4 are free.

The Chinese remainder evaluation for i = 1 gives 6ai ≡ 0 (mod 4 × 9), ai ≡ 0
(mod 6). So the exponent of the 3 is a multiple of 6, as the general case.

The Chinese remainder evaluation for i = 2 with ci = 1, di = 0 gives 6ai ≡ 24
(mod 4× 9), i.e., ai ≡ 4 (mod 6). So the exponent of the p2 = 5 is a multiple of 6
plus an extra 4.

In summary, the necessary condition from the prime power analysis is that a is
of the form a = 54s6, s ∈ Z0 if b = 2a. Insertion of that form into the equations
turns out that all of these are indeed solutions:

Theorem 3. All solutions of the form (a, b = 2a) are given by the set of a = 54s6

with non-negative integers s, where (x, y) = (53s4, 3× 56s9).

2.3. k = 3. From the third line of the table we have the extra cases of Table 3. So
the solutions require a = 24 × 54 × 73s6 and all these turn also out to be sufficient:

Theorem 4. All solutions of the form (a, b = 3a) are given by the set of a = 24 ×
54×73s6 with non-negative integers s, where (x, y) = (23×53×72s4, 27×56×75s9).

2.4. k = 4. The primes of the third line of table 1 generate the extra cases of Table
4. So the solutions require a = 53 × 133 × 174s6 and all these turn also out to be
sufficient:

Theorem 5. All solutions of the form (a, b = 4a) are given by the set of a =
53×133×174s6 with non-negative integers s, where (x, y) = (52×132×173s4, 55×
135 × 176s9).
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i ci di pai
i

1 1 1 21

2 0 2 30

4 0 1 73

6 1 0 134

Table 5. The Chinese remainder solutions for k = 5. Fundamen-
tal solution a = 2× 73 × 134.

i ci di pai
i

4 0 1 73

11 0 1 313

12 1 0 374

Table 6. The Chinese remainder solutions for k = 6. Fundamen-
tal solution a = 73 × 313 × 374.

i ci di pai
i

1 1 3 21

3 2 0 52

14 0 1 433

Table 7. The Chinese remainder solutions for k = 7.

i ci di pai
i

2 0 3 33

3 1 0 54

6 1 0 134

8 0 1 193

Table 8. The Chinese remainder solutions for k = 8.

2.5. k ≥ 5. Further solutions (a, b = ka) with k = 5 . . . 10 are gathered in Tables
5–10.

Theorem 6. All solutions (a, b = ka) for factors k = 5 . . . 10 are obtained from
tables 5–10 in the form a =

∏
pai
i s

6, where the pre-factor (the fundamental solution)
is the product of the prime powers in the last column of the associated table.

As a sort of summary of Section 2, collecting results for k ≤ 30 shows that the
b-values are (a superset) of [7, A106320] { 2, 128, 1250, 1458, 8192, 31250, 80000,
93312, 235298, 524288, 911250, 1062882, 2000000, 3543122, 5120000, 5971968,
9653618, 10290000, 15059072, 19531250, 22781250, 27827450, 33554432, 48275138,
58320000, 68024448, 94091762, 97964230, 128000000, 147061250, 171532242, 226759808,
296071778, 327680000, 382205952, 488281250 }

3. Fractional Ratios of the Two Members

Besides the cases where b is an integer multiple of a there is also room for cases
where the values in the pair (a, b) have some non-integer ratio b/a = k/u > 1 with
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i ci di pai
i

1 1 1 21

3 0 1 53

13 1 0 414

21 0 1 733

Table 9. The Chinese remainder solutions for k = 9. Fundamen-
tal solution a = 2× 53 × 414 × 733.

i ci di pai
i

4 0 1 73

5 0 1 113

6 1 0 133

26 1 0 1014

Table 10. The Chinese remainder solutions for k = 10. Funda-
mental solution a = 73 × 113 × 133 × 1014.

coprime (k, u) = 1. Eq. (5) turns into

(15) (1 + k2/u2)a2 = z3 ∧ (1 + k3/u3)a3 = y2;

(16) (u2 + k2)a2 = u2z3 ∧ (u3 + k3)a3 = u3y2.

We generalize (6) and (7) to u ≥ 1 and define

u2 + k2 = 2c13c25c3 · · · =
∏
i

pcii ,(17)

u3 + k3 = 2d13d25d3 · · · =
∏
i

pdi
i ,(18)

u = 2u13u25u3 · · · =
∏
i

pui
i .(19)

The uniqueness of the prime power expansions of (16) requires

ci + 2ai = 3xi + 2ui;(20a)

di + 3ai = 2yi + 3ui.(20b)

Unimpressed we promote the analysis as at the end of Section 2.1, multiply the two
equations by 3 and 2, and derive the Chinese remainder equations:

6ai ≡ 6ui − 3ci (mod 9);(21a)

6ai ≡ 6ui − 2di (mod 4).(21b)

The CRT guarantees that an integer solution 6ai exists, because 9 and 4 are rel-
atively prime. Furthermore the result will always be a multiple of 6 (hence ai an
integer), because from the first of the equations read modulo 3 we deduce that 6ai
is a multiple of 3, and from the second read modulo 2 that 6ai is a multiple of 2:

Lemma 1. For each ansatz of the ratio b/a = k/u, the algorithm generates a
conjectural, unique fundamental (i.e., 6-free, smallest) solution a.

To show that these products of the CRT are also solving the coupled Diophantine
equations, we need to show that the step from (20) to (21) is reversible, so that
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i ci di ui pai
i

1 0 0 1 21

3 0 1 0 53

4 0 1 0 73

6 1 0 0 134

Table 11. The Chinese remainder solutions for k/u = 3/2.

i ci di ui pai
i

1 0 0 3 23

6 0 2 0 130

7 2 0 0 172

9 0 1 0 233

Table 12. The Chinese remainder solutions for k/u = 15/8.

all solutions of (21) also fulfill (20). Indeed we can find a multiple of 9 and add it
to the right hand side of the equivalence (21a) such that it becomes an equality,
and can find a multiple of 4 and add it to the right hand side of the equivalence
(21b) such that it becomes an equality. Dividing the two equations by 3 and 2,
respectively, turns out to be a constructive proof that the 3xi and 2yi exist, and
that they are multiples of 3 and 2:

Theorem 7. For each ansatz of the ratio b/a = k/u, the algorithm generates a
unique fundamental (i.e., 6-free, smallest) solution a.

The simplest application is the ansatz k/u = 3/2 with the solution displayed in
Table 11. The fundamental solution is (a, b = 3a/2) = (2 × 53 × 73 × 134, 54 ×
73 × 134) = (2449105750, 3673658625). A solution with smaller b is obtained by
k/u = 15/8 as illustrated by Table 12.

Systematical exploration of ratios k/u sorted along increasing numerator k gen-
erates Table 13.
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a b k/u
2 2 1

625 1250 2
3430000 10290000 3

2449105750 3673658625 3/2
22936954625 91747818500 4

56517825 75357100 4/3
19592846 97964230 5

3327950899994 8319877249985 5/2
3437223234 5728705390 5/3

104677490484 130846863105 5/4
19150763710393 114904582262358 6

2745064044632305 3294076853558766 6/5
3975350 27827450 7

936110884878 3276388097073 7/2
26869428369750 62695332862750 7/3

4813895358057500 8424316876600625 7/4
329402537360 461163552304 7/5

54709453541096250 63827695797945625 7/6
3305810795625 26446486365000 8
113394176313 302384470168 8/3
689223517385 1102757627816 8/5

978549117961625 1118341849099000 8/7
274817266734250 2473355400608250 9

41793444127641250 188070498574385625 9/2
176590156053048868 397327851119359953 9/4

6143093188763230 11057567739773814 9/5
601306443010000 773108283870000 9/7

6758920534667005000 7603785601500380625 9/8
104372894488263401 1043728944882634010 10
458710390065569889 1529034633551899630 10/3

8357399286061919849 11939141837231314070 10/7
49927726291701142521 55475251435223491690 10/9

11221334146768 123434675614448 11
4801442438 26407933409 11/2

33528490382546250 122937798069336250 11/3
5247317639775500 14430123509382625 11/4
1712007269488880 3766415992875536 11/5

13496488877215427538 24743562941561617153 11/6
587831133723750 923734638708750 11/7

58661465201996135000 80659514652744685625 11/8
Table 13. The fundamental solutions for b/a ratios up to numer-
ator k = 11.
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Multiplications with 6th powers and sorting along increasing b leads from Table
13 to Table 14. Primitive solutions with a = b or a = 0 (k/u = 1 or k/u = ∞)
are not listed. The fundamental solutions are flagged by s = 1. The list is not
proven to be complete up to the maximum b, because only a limited number of
ratios b/a = k/u were computed.

Table 14: Non-primitive Bhaskara pairs with b ≤ 2.5 × 1011 after
scanning the b/a ratios up to numerators k ≤ 1500. [7, A106322]

a b k/u s
625 1250 2 1

40000 80000 2 2
455625 911250 2 3

2560000 5120000 2 4
3430000 10290000 3 1
9765625 19531250 2 5
3975350 27827450 7 1

28130104 52743945 15/8 1
29160000 58320000 2 6
56517825 75357100 4/3 1
19592846 97964230 5 1
73530625 147061250 2 7

163840000 327680000 2 8
219520000 658560000 3 2
332150625 664301250 2 9
625000000 1250000000 2 10
254422400 1780956800 7 2

1107225625 2214451250 2 11
920414222 2235291682 17/7 1

1800326656 3375612480 15/8 2
2449105750 3673658625 3/2 1
1866240000 3732480000 2 12
3617140800 4822854400 4/3 2
3437223234 5728705390 5/3 1
3016755625 6033511250 2 13
1253942144 6269710720 5 2
2500470000 7501410000 3 3
4705960000 9411920000 2 14
9725113750 11493316250 13/11 1
7119140625 14238281250 2 15
2898030150 20286211050 7 3

10485760000 20971520000 2 16
4801442438 26407933409 11/2 1

15085980625 30171961250 2 17
20506845816 38450335905 15/8 3
14049280000 42147840000 3 4
21257640000 42515280000 2 18
41201494425 54935325900 4/3 3
29403675625 58807351250 2 19
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a b k/u s
14283184734 71415923670 5 3
40000000000 80000000000 2 20
56364477246 81415356022 13/9 1
22936954625 91747818500 4 1
53603825625 107207651250 2 21
16283033600 113981235200 7 4

104677490484 130846863105 5/4 1
70862440000 141724880000 2 22
58906510208 143058667648 17/7 2
53593750000 160781250000 3 5
92522430625 185044861250 2 23

115220905984 216039198720 15/8 4
9863101250 226851328750 23 1

156742768000 235114152000 3/2 2
119439360000 238878720000 2 24

4. Summary

We have shown that for each ratio b/a a unique smallest (fundamental) solution
of the non-linear coupled diophantine equations (1) exists, which can be constructed
by modular analysis via the Chinese Remainder Theorem. We constructed these
explicitly for a limited set of small ratios.

References

1. Michael A. Bennett, Imin Chen, Sander R. Dahmen, and Soroosh Yazdani, On the equation

a3 + b3n = c2, Acta. Arithm. 163 (2014), no. 4, 327–343.

2. Nils Bruin, The diophantine equations x2 = ±y4 = ±z6 and x2 ± y8 = z3, Compos. Mathem.
118 (1999), no. 3, 305–321.

3. Sander R. Dahmen, A refined modular approach to the diophantie equation x2 + y2n = z3,

arXiv:1002.0020 (2010).
4. Aviezri S. Fraenkel, New proof of the general chinese remainder theorem, Proc. Amer. Math.

Soc. 14 (1963), no. 5, 790–791. MR 0154841 (27 #4785)
5. Yeu-Pong Lai and Chin-Chen Chang, Parallel computational algorithms for generalized chinese

remainder theorem, Comput. Electr. Engin. 29 (2003), no. 8, 801–811.

6. Oystein Ore, The general chinese remainder theorem, Am. Math. Monthly 59 (1952), no. 6,
365–370.

7. Neil J. A. Sloane, The On-Line Encyclopedia Of Integer Sequences, Notices Am. Math. Soc.

50 (2003), no. 8, 912–915, http://oeis.org/. MR 1992789 (2004f:11151)

E-mail address: mathar@mpia.de

URL: http://www.mpia.de/~mathar

Hoeschstr. 7, 52372 Kreuzau, Germany


	1. Pair of Coupled Nonlinear Diophantine Equations
	1.1. Scope
	1.2. Primitive Solutions
	1.3. Bhaskara Twins

	2. Integer Ratios of the two Members
	2.1. Prime Factorization
	2.2. k=2
	2.3. k=3
	2.4. k=4
	2.5. k5

	3. Fractional Ratios of the Two Members
	4. Summary
	References

